4 research outputs found

    Optical Mode Tuning of Monolayer Tungsten Diselenide (WSe<sub>2</sub>) by Integrating with One-Dimensional Photonic Crystal through Exciton–Photon Coupling

    No full text
    Two-dimensional materials, such as transition metal dichalogenides (TMDs), are emerging materials for optoelectronic applications due to their exceptional light–matter interaction characteristics. At room temperature, the coupling of excitons in monolayer TMDs with light opens up promising possibilities for realistic electronics. Controlling light–matter interactions could open up new possibilities for a variety of applications, and it could become a primary focus for mainstream nanophotonics. In this paper, we show how coupling can be achieved between excitons in the tungsten diselenide (WSe2) monolayer with band-edge resonance of one-dimensional (1-D) photonic crystal at room temperature. We achieved a Rabi splitting of 25.0 meV for the coupled system, indicating that the excitons in WSe2 and photons in 1-D photonic crystal were coupled successfully. In addition to this, controlling circularly polarized (CP) states of light is also important for the development of various applications in displays, quantum communications, polarization-tunable photon source, etc. TMDs are excellent chiroptical materials for CP photon emitters because of their intrinsic circular polarized light emissions. In this paper, we also demonstrate that integration between the TMDs and photonic crystal could help to manipulate the circular dichroism and hence the CP light emissions by enhancing the light–mater interaction. The degree of polarization of WSe2 was significantly enhanced through the coupling between excitons in WSe2 and the PhC resonant cavity mode. This coupled system could be used as a platform for manipulating polarized light states, which might be useful in optical information technology, chip-scale biosensing and various opto-valleytronic devices based on 2-D materials

    Investigating the associations between organophosphate flame retardants (OPFRs) and fine particles in paired indoor and outdoor air: A probabilistic prediction model for deriving OPFRs in indoor environments

    No full text
    Contaminants of emerging concern such as organophosphate flame retardants (OPFRs) are associated with atmospheric fine particles (PM2.5), which pose the greatest health risk in the world. However, few surveys have explored the interaction between PM2.5 and OPFRs in residential paired indoor/outdoor environments. 11 priority OPFRs and PM2.5 were investigated across 178 paired indoor and outdoor air samples taken from 89 children’s households in southern Taiwan, across cold and warm seasons. This involved exploring their associations with building characteristics, interior materials, and human activities. We developed a probabilistic predictive model for indoor OPFRs based on the indoor/outdoor (I/O) ratio of contaminants and an air quality index. The significant associations of paired indoor/outdoor OPFRs and PM2.5 were explored. The indoor level of OPFRs was greater than that of outdoor households, contrasting with PM2.5. The I/O OPFRs ratio was higher than 1 (except for TEHP, EHDPP, and TCP), which suggests that the sources of OPFRs were primarily emitted from indoors. Indoor TCEP was significantly positively associated with indoor and outdoor PM2.5. The OPFR level detected in apartments was higher than in houses due to the greater decoration, furniture and electronic devices. However, this was not the case for PM2.5. TCIPP was the dominant compound in paired indoor and outdoor air. The indoor OPFR predictive model obtained a high accuracy with an R2 value of 0.87. The material used in mattresses, the use of purifiers and heaters, and the total material area were the main influencing factors for indoor OPFRs in households. These findings could provide important evidence of the interaction between paired indoor/outdoor OPFRs and PM2.5 and interior equipment in different building types. In addition, it could prevent the potential risks posed by indoor/outdoor air pollutants and eliminate OPFR emissions through the selection of better construction and building materials

    A game changer: the use of digital technologies in the management of upper limb rehabilitation

    No full text
    Hemiparesis is a symptom of residual weakness in half of the body, including the upper extremity, which affects the majority of post stroke survivors. Upper limb function is essential for daily life and reduction in movements can lead to tremendous decline in quality of life and independence. Current treatments, such as physiotherapy, aim to improve motor functions, however due to increasing NHS pressure, growing recognition on mental health, and close scrutiny on disease spending there is an urgent need for new approaches to be developed rapidly and sufficient resources devoted to stroke disease. Fortunately, a range of digital technologies has led to revived rehabilitation techniques in captivating and stimulating environments. To gain further insight, a meta-analysis literature search was carried out using the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) method. Articles were categorized and pooled into the following groups; pro/anti/neutral for the use of digital technology. Additionally, most literature is rationalised by quantitative and qualitative findings. Findings displayed, the majority of the inclusive literature is supportive of the use of digital technologies in the rehabilitation of upper extremity following stroke. Overall, the review highlights a wide understanding and promise directed into introducing devices into a clinical setting. Analysis of all four categories; (1) Digital Technology, (2) Virtual Reality, (3) Robotics and (4) Leap Motion displayed varying qualities both—pro and negative across each device. Prevailing developments on use of these technologies highlights an evolutionary and revolutionary step into utilizing digital technologies for rehabilitation purposes due to the vast functional gains and engagement levels experienced by patients. The influx of more commercialised and accessible devices could alter stroke recovery further with initial recommendations for combination therapy utilizing conventional and digital resources
    corecore