5,748 research outputs found

    Spontaneous breaking of the Fermi surface symmetry in the t-J model: a numerical study

    Full text link
    We present a variational Monte Carlo (VMC) study of spontaneous Fermi surface symmetry breaking in the t-J model. We find that the variational energy of a Gutzwiller projected Fermi sea is lowered by allowing for a finite asymmetry between the x- and the y-directions. However, the best variational state remains a pure superconducting state with d-wave symmetry, as long as the underlying lattice is isotropic. Our VMC results are in good overall agreement with slave boson mean field theory (SBMFT) and renormalized mean field theory (RMFT), although apparent discrepancies do show up in the half-filled limit, revealing some limitations of mean field theories. VMC and complementary RMFT calculations also confirm the SBMFT predictions that many-body interactions can enhance any anisotropy in the underlying crystal lattice. Thus, our results may be of consequence for the description of strongly correlated superconductors with an anisotropic lattice structure.Comment: 6 pages, 7 figures; final versio

    The Unpredictability of the Most Energetic Solar Events

    Full text link
    Observations over the past two solar cycles show a highly irregular pattern of occurrence for major solar flares, gamma-ray events, and solar energetic particle (SEP) fluences. Such phenomena do not appear to follow the direct indices of solar magnetic activity, such as the sunspot number. I show that this results from the non-Poisson occurrence for the most energetic events. This Letter also points out a particularly striking example of this irregularity in a comparison between the declining phases of the recent two solar cycles (1993-1995 and 2004-2006, respectively) and traces it through the radiated energies of the flares, the associated SEP fluences, and the sunspot areas. These factors suggest that processes in the solar interior involved with the supply of magnetic flux up to the surface of the Sun have strong correlations in space and time, leading to a complex occurrence pattern that is presently unpredictable on timescales longer than active region lifetimes (weeks) and not correlated well with the solar cycle itself.Comment: 4 page

    Spontaneous R-Symmetry Breaking in O'Raifeartaigh Models

    Full text link
    We study the question of whether spontaneous U(1)_R breaking can occur in O'Raifeartaigh-type models of spontaneous supersymmetry breaking. We show that in order for it to occur, there must be a field in the theory with R-charge different from 0 or 2. We construct the simplest O'Raifeartaigh model with this property, and we find that for a wide range of parameters, it has a meta-stable vacuum where U(1)_R is spontaneously broken. This suggests that spontaneous U(1)_R breaking actually occurs in generic O'Raifeartaigh models.Comment: 19 pages; v2: reference added, minor changes; v3: important typo fixe

    Supersymmetry Breaking, R-Symmetry Breaking and Metastable Vacua

    Full text link
    Models of spontaneous supersymmetry breaking generically have an R-symmetry, which is problematic for obtaining gaugino masses and avoiding light R-axions. The situation is improved in models of metastable supersymmetry breaking, which generically have only an approximate R-symmetry. Based on this we argue, with mild assumptions, that metastable supersymmetry breaking is inevitable. We also illustrate various general issues regarding spontaneous and explicit R-symmetry breaking, using simple toy models of supersymmetry breaking.Comment: 23 page

    Exact Black Hole Degeneracies and the Topological String

    Full text link
    Motivated by the recent conjecture of Ooguri, Strominger and Vafa, we compute the semi-canonical partition function of BPS black holes in N=4 and N=8 string theories, to all orders in perturbation theory. Not only are the black hole partition functions surprisingly simple; they capture the full topological string amplitudes, as expected from the OSV conjecture. The agreement is not perfect, however, as there are differences between the black hole and topological string partition functions even at the perturbative level. We propose a minimal modification of the OSV conjecture, in which these differences are understood as a nontrivial measure factor for the topological string.Comment: 24 page

    Batalin-Vilkovisky Integrals in Finite Dimensions

    Full text link
    The Batalin-Vilkovisky method (BV) is the most powerful method to analyze functional integrals with (infinite-dimensional) gauge symmetries presently known. It has been invented to fix gauges associated with symmetries that do not close off-shell. Homological Perturbation Theory is introduced and used to develop the integration theory behind BV and to describe the BV quantization of a Lagrangian system with symmetries. Localization (illustrated in terms of Duistermaat-Heckman localization) as well as anomalous symmetries are discussed in the framework of BV.Comment: 35 page

    Staggered-vorticity correlations in a lightly doped t-J model: a variational approach

    Full text link
    We report staggered vorticity correlations of current in the d-wave variational wave function for the lightly-doped t-J model. Such correlations are explained from the SU(2) symmetry relating d-wave and staggered-flux mean-field phases. The correlation functions computed by the variational Monte Carlo method suggest that pairs are formed of holes circulating in opposite directions.Comment: ReVTeX, 4 pages, 3 figure

    Limits on Phase Separation for Two-Dimensional Strongly Correlated Electrons

    Full text link
    From calculations of the high temperature series for the free energy of the two-dimensional t-J model we construct series for ratios of the free energy per hole. The ratios can be extrapolated very accurately to low temperatures and used to investigate phase separation. Our results confirm that phase separation occurs only for J/t greater than 1.2. Also, the phase transition into the phase separated state has Tc of approximately 0.25J for large J/t.Comment: 4 pages, 6 figure

    Field and intensity correlations in amplifying random media

    Get PDF
    We study local and nonlocal correlations of light transmitted through active random media. The conventional approach results in divergence of ensemble averaged correlation functions due to existence of lasing realizations. We introduce conditional average for correlation functions by omitting the divergent realizations. Our numerical simulation reveals that amplification does not affect local spatial correlation. The nonlocal intensity correlations are strongly magnified due to selective enhancement of the contributions from long propagation paths. We also show that by increasing gain, the average mode linewidth can be made smaller than the average mode spacing. This implies that light transport through a diffusive random system with gain could exhibit some similarities to that through a localized passive system, owing to dominant influence of the resonant modes with narrow width.Comment: 5 pages, 4 figure

    Backlund Transformations, D-Branes, and Fluxes in Minimal Type 0 Strings

    Full text link
    We study the Type 0A string theory in the (2,4k) superconformal minimal model backgrounds, focusing on the fully non-perturbative string equations which define the partition function of the model. The equations admit a parameter, Gamma, which in the spacetime interpretation controls the number of background D-branes, or R-R flux units, depending upon which weak coupling regime is taken. We study the properties of the string equations (often focusing on the (2,4) model in particular) and their physical solutions. The solutions are the potential for an associated Schrodinger problem whose wavefunction is that of an extended D-brane probe. We perform a numerical study of the spectrum of this system for varying Gamma and establish that when Gamma is a positive integer the equations' solutions have special properties consistent with the spacetime interpretation. We also show that a natural solution-generating transformation (that changes Gamma by an integer) is the Backlund transformation of the KdV hierarchy specialized to (scale invariant) solitons at zero velocity. Our results suggest that the localized D-branes of the minimal string theories are directly related to the solitons of the KdV hierarchy. Further, we observe an interesting transition when Gamma=-1.Comment: 17 pages, 3 figure
    • …
    corecore