560 research outputs found

    Quantitative Robustness Analysis of Quantum Programs (Extended Version)

    Full text link
    Quantum computation is a topic of significant recent interest, with practical advances coming from both research and industry. A major challenge in quantum programming is dealing with errors (quantum noise) during execution. Because quantum resources (e.g., qubits) are scarce, classical error correction techniques applied at the level of the architecture are currently cost-prohibitive. But while this reality means that quantum programs are almost certain to have errors, there as yet exists no principled means to reason about erroneous behavior. This paper attempts to fill this gap by developing a semantics for erroneous quantum while-programs, as well as a logic for reasoning about them. This logic permits proving a property we have identified, called ϵ\epsilon-robustness, which characterizes possible "distance" between an ideal program and an erroneous one. We have proved the logic sound, and showed its utility on several case studies, notably: (1) analyzing the robustness of noisy versions of the quantum Bernoulli factory (QBF) and quantum walk (QW); (2) demonstrating the (in)effectiveness of different error correction schemes on single-qubit errors; and (3) analyzing the robustness of a fault-tolerant version of QBF.Comment: 34 pages, LaTeX; v2: fixed typo

    Effects of cord pretension and stiffness of the Dynesys system spacer on the biomechanics of spinal decompression- a finite element study

    Get PDF
    BACKGROUND: The Dynesys system provides stability for destabilized spines while preserving segmental motion. However, clinical studies have demonstrated that the Dynesys system does not prevent adjacent segment disease. Moreover, biomechanical studies have revealed that the stiffness of the Dynesys system is comparable to rigid fixation. Our previous studies showed that adjusting the cord pretension of the Dynesys system alleviates stress on the adjacent level during flexion. We also demonstrated that altering the stiffness of Dynesys system spacers can alleviate stress on the adjacent level during extension of the intact spine. In the present study, we hypothesized that omitting the cord preload and changing the stiffness of the Dynesys system spacers would abate stress shielding on adjacent spinal segments. METHODS: Finite element models were developed for - intact spine (INT), facetectomy and laminectomy at L3-4 (DEC), intact spine with Dynesys system (IntDyWL), decompressed spine with Dynesys system (DecDyWL), decompressed spine with Dynesys system without cord preload (DecDyNL), and decompressed spine with Dynesys system assembled using spacers that were 0.8 times the standard diameter without cord pretension (DecDyNL0.8). These models were subjected to hybrid control for flexion, extension, axial rotation; and lateral bending. RESULTS: The greatest decreases in range of motion (ROM) at the L3-4 level occurred for axial rotation and lateral bending in the IntDyWL model and for flexion and extension in the DecDyWL model. The greatest decreases in disc stress occurred for extension and lateral bending in the IntDyWL model and for flexion in the DecDyWL model. The greatest decreases in facet contact force occurred for extension and lateral bending in the DecDyNL model and for axial rotation in the DecDyWL model. The greatest increases in ROMs at L2-3 level occurred for flexion, axial rotation and lateral bending in IntDyWL model and for extension in the DecDyNL model. The greatest increases in disc stress occurred for flexion, axial rotation and lateral bending in the IntDyWL model and for extension in the DecDyNL model. The greatest increases in facet contact force occurred for extension and lateral bending in the DecDyNL model and for axial rotation in the IntDyWL model. CONCLUSIONS: The results reveals that removing the Dynesys system cord pretension attenuates the ROMs, disc stress, and facet joint contact forces at adjacent levels during flexion and axial rotation. Removing cord pretension together with softening spacers abates stress shielding for adjacent segment during four different moments, and it provides enough security while not jeopardizes the stability of spine during axial rotation

    Evaluation on the Pharmacological Effect of Traditional Chinese Medicine SiJunZiTang on Stress-Induced Peptic Ulcers

    Get PDF
    Purpose. To explore the effects of SiJunZiTang (SJZT) on central neurotransmitters and the inhibition of HCl hypersecretion, along with the role of the vagus nerve. From this, the effects of SJZT and its constituent ingredients on inhibiting stress-induced peptic ulcers will be determined. Methods. Methods used to determine SJZT's effectiveness included (1) measuring the antipeptic ulcer effects of varying combinations of the constituents of SJZT; (2) evaluations of monoamine (MA) level in the brain; and (3) measuring the effects of longer-term SJZT treatment. Results. Comparing the control and experimental groups where the rats’ vagus nerves were not cut after taking SJZT orally (500 mg/kg and 1000 mg/kg), the volume of enterogastric juice, free HCl and total acidity all reduce dose-dependently. The group administered SJZT at 1000 mg/kg showed significant reductions (P<0.05). For the experimental groups where the vagus nerves were cut, a comparison with the control group suggests that the group receiving SJZT (500 mg/kg) orally for 21 days demonstrated a cure rate of 34.53%. Conclusion. The results display a correlation between the therapeutic effects of SJZT on stress-induced peptic ulcers and central neurotransmitter levels. Further to this, SJZT can inhibit the hypersecretion of HCl in the stomach, thus inhibiting stress-induced peptic ulcers

    Synthesis of SnO 2

    Get PDF
    Zinc oxides deposited on Tin dioxide nanowires have been successfully synthesized by atomic layer deposition (ALD). The diameter of SnO2-ZnO core-shell nanowires is 100 nm by ALD 200 cycles. The result of electricity measurements shows that the resistance of SnO2-ZnO core-shell nanowires (ALD: 200 cycles) is 925 Ω, which is much lower than pure SnO2 nanowires (3.6 × 106 Ω). The result of UV light test shows that the recovery time of SnO2-ZnO core-shell nanowires (ALD: 200 cycles) is 328 seconds, which is lower than pure SnO2 nanowires (938 seconds). These results demonstrated that the SnO2-ZnO core-shell nanowires have potential application as UV photodetectors with high photon-sensing properties

    The Severity of Fatty Liver Disease Relating to Metabolic Abnormalities Independently Predicts Coronary Calcification

    Get PDF
    Background. Nonalcoholic fatty liver disease (NAFLD) is one of the metabolic disorders presented in liver. The relationship between severity of NAFLD and coronary atherosclerotic burden remains largely unknown. Methods and Materials. We analyzed subjects undergoing coronary calcium score evaluation by computed tomography (MDCT) and fatty liver assessment using abdominal ultrasonography. Framingham risk score (FRS) and metabolic risk score (MRS) were obtained in all subjects. A graded, semiquantitative score was established to quantify the severity of NAFLD. Multivariate logistic regression analysis was used to depict the association between NAFLD and calcium score. Results. Of all, 342 participants (female: 22.5%, mean age: 48.7 ± 7.0 years) met the sufficient information rendering detailed analysis. The severity of NAFLD was positively associated with MRS (X2 = 6.12, trend P < 0.001) and FRS (X2 = 5.88, trend P < 0.001). After multivariable adjustment for clinical variables and life styles, the existence of moderate to severe NAFLD was independently associated with abnormal calcium score (P < 0.05). Conclusion. The severity of NAFLD correlated well with metabolic abnormality and was independently predict coronary calcification beyond clinical factors. Our data suggests that NAFLD based on ultrasonogram could positively reflect the burden of coronary calcification
    corecore