307 research outputs found

    VLSI Implementation of an Efficient Lossless EEG Compression Design for Wireless Body Area Network

    Get PDF
    Data transmission of electroencephalography (EEG) signals over Wireless Body Area Network (WBAN) is currently a widely used system that comes together with challenges in terms of efficiency and effectivity. In this study, an effective Very-Large-Scale Integration (VLSI) circuit design of lossless EEG compression circuit is proposed to increase both efficiency and effectivity of EEG signal transmission over WBAN. The proposed design was realized based on a novel lossless compression algorithm which consists of an adaptive fuzzy predictor, a voting-based scheme and a tri-stage entropy encoder. The tri-stage entropy encoder is composed of a two-stage Huffman and Golomb-Rice encoders with static coding table using basic comparator and multiplexer components. A pipelining technique was incorporated to enhance the performance of the proposed design. The proposed design was fabricated using a 0.18 μm CMOS technology containing 8405 gates with 2.58 mW simulated power consumption under an operating condition of 100 MHz clock speed. The CHB-MIT Scalp EEG Database was used to test the performance of the proposed technique in terms of compression rate which yielded an average value of 2.35 for 23 channels. Compared with previously proposed hardware-oriented lossless EEG compression designs, this work provided a 14.6% increase in compression rate with a 37.3% reduction in hardware cost while maintaining a low system complexity

    Efficient and Accurate CORDIC Pipelined Architecture Chip Design Based on Binomial Approximation for Biped Robot

    Get PDF
    Recently, much research has focused on the design of biped robots with stable and smooth walking ability, identical to human beings, and thus, in the coming years, biped robots will accomplish rescue or exploration tasks in challenging environments. To achieve this goal, one of the important problems is to design a chip for real-time calculation of moving length and rotation angle of the biped robot. This paper presents an efficient and accurate coordinate rotation digital computer (CORDIC)-based efficient chip design to calculate the moving length and rotation angle for each step of the biped robot. In a previous work, the hardware cost of the accurate CORDIC-based algorithm of biped robots was primarily limited by the scale-factor architecture. To solve this problem, a binomial approximation was carefully employed for computing the scale-factor. In doing so, the CORDIC-based architecture can achieve similar accuracy but with fewer iterations, thus reducing hardware cost. Hence, incorporating CORDIC-based architecture with binomial approximation, pipelined architecture, and hardware sharing machines, this paper proposes a novel efficient and accurate CORDIC-based chip design by using an iterative pipelining architecture for biped robots. In this design, only low-complexity shift and add operators were used for realizing efficient hardware architecture and achieving the real-time computation of lengths and angles for biped robots. Compared with current designs, this work reduced hardware cost by 7.2%, decreased average errors by 94.5%, and improved average executing performance by 31.5%, when computing ten angles of biped robots

    A High-Accuracy and Power-Efficient Self-Optimizing Wireless Water Level Monitoring IoT Device for Smart City

    Get PDF
    In this paper; a novel self-optimizing water level monitoring methodology is proposed for smart city applications. Considering system maintenance; the efficiency of power consumption and accuracy will be important for Internet of Things (IoT) devices and systems. A multi-step measurement mechanism and power self-charging process are proposed in this study for improving the efficiency of a device for water level monitoring applications. The proposed methodology improved accuracy by 0.16–0.39% by moving the sensor to estimate the distance relative to different locations. Additional power is generated by executing a multi-step measurement while the power self-optimizing process used dynamically adjusts the settings to balance the current of charging and discharging. The battery level can efficiently go over 50% in a stable charging simulation. These methodologies were successfully implemented using an embedded control device; an ultrasonic sensor module; a LORA transmission module; and a stepper motor. According to the experimental results; the proposed multi-step methodology has the benefits of high accuracy and efficient power consumption for water level monitoring applications

    VLSI Implementation of a Cost-Efficient Loeffler-DCT Algorithm with Recursive CORDIC for DCT-Based Encoder

    Get PDF
    This paper presents a low-cost and high-quality; hardware-oriented; two-dimensional discrete cosine transform (2-D DCT) signal analyzer for image and video encoders. In order to reduce memory requirement and improve image quality; a novel Loeffler DCT based on a coordinate rotation digital computer (CORDIC) technique is proposed. In addition; the proposed algorithm is realized by a recursive CORDIC architecture instead of an unfolded CORDIC architecture with approximated scale factors. In the proposed design; a fully pipelined architecture is developed to efficiently increase operating frequency and throughput; and scale factors are implemented by using four hardware-sharing machines for complexity reduction. Thus; the computational complexity can be decreased significantly with only 0.01 dB loss deviated from the optimal image quality of the Loeffler DCT. Experimental results show that the proposed 2-D DCT spectral analyzer not only achieved a superior average peak signal–noise ratio (PSNR) compared to the previous CORDIC-DCT algorithms but also designed cost-efficient architecture for very large scale integration (VLSI) implementation. The proposed design was realized using a UMC 0.18-μm CMOS process with a synthesized gate count of 8.04 k and core area of 75,100 μm2. Its operating frequency was 100 MHz and power consumption was 4.17 mW. Moreover; this work had at least a 64.1% gate count reduction and saved at least 22.5% in power consumption compared to previous designs

    Receptor specificity does not affect replication or virulence of the 2009 pandemic H1N1 influenza virus in mice and ferrets

    Get PDF
    Human influenza viruses predominantly bind α2,6 linked sialic acid (SA) while avian viruses bind α2,3 SA-containing complex glycans. Virulence and tissue tropism of influenza viruses have been ascribed to this binding preference. We generated 2009 pandemic H1N1 (pH1N1) viruses with either predominant α2,3 or α2,6 SA binding and evaluated these viruses in mice and ferrets. The α2,3 pH1N1 virus had similar virulence in mice and replicated to similar titers in the respiratory tract of mice and ferrets as the α2,6 and WT pH1N1 viruses. Immunohistochemical analysis determined that all viruses infected similar cell types in ferret lungs. There is increasing evidence that receptor specificity of influenza viruses is more complex than the binary model of α2,6 and α2,3 SA binding and our data suggest that influenza viruses use a wide range of SA moieties to infect host cells.National Institute of Allergy and Infectious Diseases (U.S.) (Intramural Research Program)National Institutes of Health (U.S.) (R37 GM057073-13)Singapore-MIT Alliance for Research and Technolog

    The Uses of a Dual-Band Corrugated Circularly Polarized Horn Antenna for 5G Systems

    Get PDF
    This paper presents the development of a wide-beam width, dual-band, omnidirectional antenna for the mm-wave band used in 5G communication systems for indoor coverage. The 5G indoor environment includes features of wide space and short range. Additionally, it needs to function well under a variety of circumstances in order to carry out its diverse set of network applications. The waveguide antenna has been designed to be small enough to meet the requirements of mm-wave band and utilizes a corrugated horn to produce a wide beam width. Additionally, it is small enough to integrate with 5G communication products and is easy to manufacture. This design is simple enough to have multi-feature antenna performance and is more useful for the femtocell repeater. The corrugated circularly polarized horn antenna has been designed for two frequency bands; namely, 26.5–30 GHz for the low band and 36–40 GHz for high band. The results of this study show that return-loss is better than 18 dB for both low and high band. The peak gain is 6.1 dBi for the low band and 8.7 dBi for the high band. The beam width is 105 degrees and 77 degrees for the low band and the high band, respectively. The axial ratio is less than 5.2 dB for both low and high band. Generally, traditional circularly polarized antennas cannot meet the requirements for broadband. The designs for the antennas proposed here can meet the requirements of FR2 bandwidths. This feature limits axial ratio performance. The measurement error in the current experiment comes from the high precision control on the size of the ridge

    A Power-Efficient Multiband Planar USB Dongle Antenna for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) had been applied in Internet of Things (IoT) and in Industry 4.0. Since a WSN system contains multiple wireless sensor nodes, it is necessary to develop a low-power and multiband wireless communication system that satisfies the specifications of the Federal Communications Commission (FCC) and the Certification European (CE). In a WSN system, many devices are of very small size and can be slipped into a Universal Serial Bus (USB), which is capable of connecting to wireless systems and networks, as well as transferring data. These devices are widely known as USB dongles. This paper develops a planar USB dongle antenna for three frequency bands, namely 2.30–2.69 GHz, 3.40–3.70 GHz, and 5.15–5.85 GHz. This study proposes a novel antenna design that uses four loops to develop the multiband USB dongle. The first and second loops construct the low and intermediate frequency ranges. The third loop resonates the high frequency property, while the fourth loop is used to enhance the bandwidth. The performance and power consumption of the proposed multiband planar USB dongle antenna were significantly improved compared to existing multiband designs

    A Classification and Prediction Hybrid Model Construction with the IQPSO-SVM Algorithm for Atrial Fibrillation Arrhythmia

    Get PDF
    Atrial fibrillation (AF) is the most common cardiovascular disease (CVD); and most existing algorithms are usually designed for the diagnosis (i.e.; feature classification) or prediction of AF. Artificial intelligence (AI) algorithms integrate the diagnosis of AF electrocardiogram (ECG) and predict the possibility that AF will occur in the future. In this paper; we utilized the MIT-BIH AF Database (AFDB); which is composed of data from normal people and patients with AF and onset characteristics; and the AFPDB database (i.e.; PAF Prediction Challenge Database); which consists of data from patients with Paroxysmal AF (PAF; the records contain the ECG preceding an episode of PAF); and subjects who do not have documented AF. We extracted the respective characteristics of the databases and used them in modeling diagnosis and prediction. In the aspect of model construction; we regarded diagnosis and prediction as two classification problems; adopted the traditional support vector machine (SVM) algorithm; and combined them. The improved quantum particle swarm optimization support vector machine (IQPSO-SVM) algorithm was used to speed the training time. During the verification process; the clinical FZU-FPH database created by Fuzhou University and Fujian Provincial Hospital was used for hybrid model testing. The data were obtained from the Holter monitor of the hospital and encrypted. We proposed an algorithm for transforming the PDF ECG waveform images of hospital examination reports into digital data. For the diagnosis model and prediction model trained using the training set of the AFDB and AFPDB databases; the sensitivity; specificity; and accuracy measures were 99.2% and 99.2%; 99.2% and 93.3%; and 91.7% and 92.5% for the test set of the AFDB and AFPDB databases; respectively. Moreover; the sensitivity; specificity; and accuracy were 94.2%; 79.7%; and 87.0%; respectively; when tested using the FZU-FPH database with 138 samples of the ECG composed of two labels. The composite classification and prediction model using a new water-fall ensemble method had a total accuracy of approximately 91% for the test set of the FZU-FPH database with 80 samples with 120 segments of ECG with three labels

    Missing Teeth and Restoration Detection Using Dental Panoramic Radiography Based on Transfer Learning With CNNs

    Get PDF
    Common dental diseases include caries, periodontitis, missing teeth and restorations. Dentists still use manual methods to judge and label lesions which is very time-consuming and highly repetitive. This research proposal uses artificial intelligence combined with image judgment technology for an improved efficiency on the process. In terms of cropping technology in images, the proposed study uses histogram equalization combined with flat-field correction for pixel value assignment. The details of the bone structure improves the resolution of the high-noise coverage. Thus, using the polynomial function connects all the interstitial strands by the strips to form a smooth curve. The curve solves the problem where the original cropping technology could not recognize a single tooth in some images. The accuracy has been improved by around 4% through the proposed cropping technique. For the convolutional neural network (CNN) technology, the lesion area analysis model is trained to judge the restoration and missing teeth of the clinical panorama (PANO) to achieve the purpose of developing an automatic diagnosis as a precision medical technology. In the current 3 commonly used neural networks namely AlexNet, GoogLeNet, and SqueezeNet, the experimental results show that the accuracy of the proposed GoogLeNet model for restoration and SqueezeNet model for missing teeth reached 97.10% and 99.90%, respectively. This research has passed the Research Institution Review Board (IRB) with application number 202002030B0

    A High-Accuracy Detection System: Based on Transfer Learning for Apical Lesions on Periapical Radiograph

    Get PDF
    Apical Lesions, one of the most common oral diseases, can be effectively detected in daily dental examinations by a periapical radiograph (PA). In the current popular endodontic treatment, most dentists spend a lot of time manually marking the lesion area. In order to reduce the burden on dentists, this paper proposes a convolutional neural network (CNN)-based regional analysis model for spical lesions for periapical radiographs. In this study, the database was provided by dentists with more than three years of practical experience, meeting the criteria for clinical practical application. The contributions of this work are (1) an advanced adaptive threshold preprocessing technique for image segmentation, which can achieve an accuracy rate of more than 96%; (2) a better and more intuitive apical lesions symptom enhancement technique; and (3) a model for apical lesions detection with an accuracy as high as 96.21%. Compared with existing state-of-the-art technology, the proposed model has improved the accuracy by more than 5%. The proposed model has successfully improved the automatic diagnosis of apical lesions. With the help of automation, dentists can focus more on technical and medical diagnoses, such as treatment, tooth cleaning, or medical communication. This proposal has been certified by the Institutional Review Board (IRB) with the certification number 202002030B0
    • …
    corecore