2 research outputs found

    Coherent transfer of light polarization to electron spins in a semiconductor

    Get PDF
    We demonstrate that the superposition of light polarization states is coherently transferred to electron spins in a semiconductor quantum well. By using time-resolved Kerr rotation we observe the initial phase of Larmor precession of electron spins whose coherence is transferred from light. To break the electron-hole spin entanglement, we utilized the big discrepancy between the transverse g-factors of electrons and light holes. The result encourages us to make a quantum media converter between flying photon qubits and stationary electron spin qubits in semiconductors.Comment: 4 pages. Submitted to Physical Review Letter
    corecore