235 research outputs found

    Application-Driven AI Paradigm for Human Action Recognition

    Full text link
    Human action recognition in computer vision has been widely studied in recent years. However, most algorithms consider only certain action specially with even high computational cost. That is not suitable for practical applications with multiple actions to be identified with low computational cost. To meet various application scenarios, this paper presents a unified human action recognition framework composed of two modules, i.e., multi-form human detection and corresponding action classification. Among them, an open-source dataset is constructed to train a multi-form human detection model that distinguishes a human being's whole body, upper body or part body, and the followed action classification model is adopted to recognize such action as falling, sleeping or on-duty, etc. Some experimental results show that the unified framework is effective for various application scenarios. It is expected to be a new application-driven AI paradigm for human action recognition

    Local earthquake seismic tomography of the Southernmost Mariana subduction zone

    Get PDF
    We employed seismic tomography to examine the velocity structure of the upper mantle in the Southernmost Mariana subduction zone. Our study focuses on data collected during a six-month experiment from 15 December 2016 to 12 June 2017, using 11 ocean bottom seismometers. By examining over 3700 local arrival times, we are able to determine the three-dimensional Vp and Vs structure. The subducting slab in this region displays a P- and S-wave velocity 2~6% higher than normal mantle and a lower Vp/Vs, with an average dip of 45° at depths ranging from 50 to 100 km. Additionally, our velocity images also shed new lights to the velocity anomalies of the mantle wedge region on top of the subducting slab, from the trench to the remnant arc. We observed slower velocity anomalies in the mantle wedge beneath the Southwest Mariana Rift, the West Mariana Ridge, and the forearc. In the outer forearc, a low-velocity anomaly is observed at depths shallower than 50 km, indicating mantle serpentinization and the presence of water. Additionally, a melt production region is observed beneath the central part of the forearc block at a depth of 40–60 km suggesting the possibility of melting processes in this region
    • …
    corecore