21 research outputs found

    An evaluation method for green logistics system design of agricultural products : a case study in Shandong province, China

    No full text
    Recently, the environmental issue caused by logistics of agricultural products has attracted a great deal of attention. In order to solve the problem, much of work focuses on green logistics to decrease environmental pollution. However, the green logistics evaluation system of agricultural products is insufficient. Therefore, establishing a reasonable green logistics evaluation system for agricultural products plays a key role in the development of green agricultural products. In this work, domestic and international environmental factors which affect the development of the green logistics of agricultural products are analyzed based on reduction, reuse, and recycling principle of circular economy. In addition, a series of evaluation indicators for green logistics of agricultural products are developed. A fuzzy analytic hierarchy process method is proposed to make a comprehensive evaluation for green logistics of agricultural products based on evaluation indicators. The method combined analytic hierarchy process and fuzzy theory, where a fuzzy transformation operator is introduced. The proposed method is applied for decision-maker in view of knowledge management. In order to verify the applicability of approach, the approach is applied to green logistics of Shandong agricultural products.Published versio

    Forms of Nutrients in Rivers Flowing into Lake Chaohu: A Comparison between Urban and Rural Rivers

    No full text
    Nutrient inputs from rivers play an important role in lake eutrophication. To compare the forms characteristics of phosphorus (P) and nitrogen (N) in rivers flowing through rural and urban areas, water samples were collected seasonally from five urban rivers and six rural rivers flowing to Lake Chaohu, China. Higher total phosphorus (TP), particulate phosphorus (PP), soluble reactive phosphorus (SRP), and dissolved nonreactive phosphorus (DNP) concentrations and SRP/TP percentages were observed in urban rivers than in rural rivers, and PP/TP and DNP/TP ratios were lower in urban rivers than in rural rivers. The concentrations of total nitrogen (TN) and all N forms other than dissolved organic nitrogen (DON) were significantly higher in urban rivers than in rural rivers. NH4+/TN levels were higher in urban rivers, whereas PN/TN and DON/TN ratios were significantly lower in urban rivers compared with rural rivers. NO3−/TN and NO2−/TN levels were similar between the two groups of rivers. TP, BD-P, and NaOH-P levels in urban river surface sediments were significantly higher than those in rural rivers. NaOH-P/TP ratios were significantly elevated in urban rivers, whereas HCl-P/TP and Res-P/TP ratios were significantly lower compared with rural rivers. Urban rivers have transferred large quantities of NH4+ and SRP into Lake Chaohu, resulting in higher TP and TN levels and NH4+/TN and SRP/TP ratios. Decreasing the input of NH4+ and SRP into urban rivers is a high priority for mitigating eutrophication and algal blooms in Lake Chaohu

    Genesis Analysis of Special Deformation Characteristics for Super-High Arch Dams in the Alpine and Gorge Regions of Southwest China

    No full text
    During the operational period, unexpected upstream deformation has been observed in several super-high arch dams located in the alpine and gorge regions. In addition, the phenomenon of the downstream dam deformation monitoring values being apparently smaller than the numerical simulation results appears in some super-high arch dams. This paper focuses on the genetic mechanism of a super-high arch dam’s special deformation characteristics. The finite element method (FEM) was used to analyze the effects of solar radiation, valley contraction, and overhanging on super-high arch dam’s deformation behavior. First, the influences of solar radiation on the temperature field and deformation characteristics of the super-high arch dam under the shading effects of the mountain and the dam body were investigated. Second, the impacts of valley contraction on the deformation characteristics of the super-high arch dam during the storage period were studied. Subsequently, the impact of the overhanging effect on the super-high arch dam’s deformation was explored. Finally, a case study was conducted on the basis of the Jinping I super-high arch dam to evaluate the effectiveness of the proposed analytical method. It is indicated that the dam’s special deformation can be explained reasonably. Above all, in order to accurately analyze and predict the deformation characteristics of super high-arch dams in the alpine and gorge regions of Southwest China, solar radiation, valley contraction, and the dam-overhanging effect need to be considered as influencing factors of dam deformation

    Data Augmentation for Audio-Visual Emotion Recognition with an Efficient Multimodal Conditional GAN

    No full text
    Audio-visual emotion recognition is the research of identifying human emotional states by combining the audio modality and the visual modality simultaneously, which plays an important role in intelligent human-machine interactions. With the help of deep learning, previous works have made great progress for audio-visual emotion recognition. However, these deep learning methods often require a large amount of data for training. In reality, data acquisition is difficult and expensive, especially for the multimodal data with different modalities. As a result, the training data may be in the low-data regime, which cannot be effectively used for deep learning. In addition, class imbalance may occur in the emotional data, which can further degrade the performance of audio-visual emotion recognition. To address these problems, we propose an efficient data augmentation framework by designing a multimodal conditional generative adversarial network (GAN) for audio-visual emotion recognition. Specifically, we design generators and discriminators for audio and visual modalities. The category information is used as their shared input to make sure our GAN can generate fake data of different categories. In addition, the high dependence between the audio modality and the visual modality in the generated multimodal data is modeled based on Hirschfeld-Gebelein-Rényi (HGR) maximal correlation. In this way, we relate different modalities in the generated data to approximate the real data. Then, the generated data are used to augment our data manifold. We further apply our approach to deal with the problem of class imbalance. To the best of our knowledge, this is the first work to propose a data augmentation strategy with a multimodal conditional GAN for audio-visual emotion recognition. We conduct a series of experiments on three public multimodal datasets, including eNTERFACE’05, RAVDESS, and CMEW. The results indicate that our multimodal conditional GAN has high effectiveness for data augmentation of audio-visual emotion recognition

    Heavy Metal Pollution, Fractionation, and Potential Ecological Risks in Sediments from Lake Chaohu (Eastern China) and the Surrounding Rivers

    No full text
    Heavy metal (Cr, Ni, Cu, Zn, Cd, and Pb) pollution, fractionation, and ecological risks in the sediments of Lake Chaohu (Eastern China), its eleven inflowing rivers and its only outflowing river were studied. An improved BCR (proposed by the European Community Bureau of Reference) sequential extraction procedure was applied to fractionate heavy metals within sediments, a geoaccumulation index was used to assess the extent of heavy metal pollution, and a risk assessment code was applied to evaluate potential ecological risks. Heavy metals in the Shuangqiao and Nanfei Rivers were generally higher than the other studied sites. Of the three Lake Chaohu sites, the highest concentrations were identified in western Chaohu. Heavy metal pollution and ecological risks in the lake’s only outflowing river were similar to those in the eastern region of the lake, to which the river is connected. Heavy metal concentrations occurred in the following order: Cd > Zn > Cu > Pb ≈ Ni ≈ Cr. Cr, Ni, and Cu made up the largest proportion of the residual fraction, while Cd was the most prominent metal in the exchangeable and carbonate-included fraction. Cd posed the greatest potential ecological risk; the heavy metals generally posed risks in the following order: Cd > Zn > Cu > Ni > Pb > Cr

    Sulfur Development in the Water-Sediment System of the Algae Accumulation Embay Area in Lake Taihu

    No full text
    Sulfur development in water-sediment systems is closely related to eutrophication and harmful algae blooms (HABs). However, the development of sulfur in water-sediment systems during heavy algae accumulation still remains unclear, especially in hyper-eutrophic shallow lakes. In this study, a quarterly field investigation was carried out for a year in the algae accumulated embay area of Lake Taihu, accompanied by a short-term laboratory experiment on algae accumulation. The results show that hydrogen sulfide and methanethiol dominated the volatile sulfur compounds (VSCs) in the water during non-accumulation seasons, whereas the concentrations of dimethyl sulfides increased during heavy algae accumulation, both in the field and the laboratory. An increase in the acid volatile sulfide (AVS) in the surface sediments was also discovered together with the increase in dimethyl sulfides. The depletion of oxygen in the overlying water and sediment–water interface during the heavy algae accumulation and decomposition was found to be closely related to both the increase in VSCs in the overlying water and increase in AVS in the sediment. The increased concentrations of these reductive sulfocompounds might aggravate the eutrophication and HABs and should be given more consideration in future eutrophication control plans for lakes
    corecore