288 research outputs found

    Two Decades of Colorization and Decolorization for Images and Videos

    Full text link
    Colorization is a computer-aided process, which aims to give color to a gray image or video. It can be used to enhance black-and-white images, including black-and-white photos, old-fashioned films, and scientific imaging results. On the contrary, decolorization is to convert a color image or video into a grayscale one. A grayscale image or video refers to an image or video with only brightness information without color information. It is the basis of some downstream image processing applications such as pattern recognition, image segmentation, and image enhancement. Different from image decolorization, video decolorization should not only consider the image contrast preservation in each video frame, but also respect the temporal and spatial consistency between video frames. Researchers were devoted to develop decolorization methods by balancing spatial-temporal consistency and algorithm efficiency. With the prevalance of the digital cameras and mobile phones, image and video colorization and decolorization have been paid more and more attention by researchers. This paper gives an overview of the progress of image and video colorization and decolorization methods in the last two decades.Comment: 12 pages, 19 figure

    Your blush gives you away: detecting hidden mental states with remote photoplethysmography and thermal imaging

    Full text link
    Multimodal emotion recognition techniques are increasingly essential for assessing mental states. Image-based methods, however, tend to focus predominantly on overt visual cues and often overlook subtler mental state changes. Psychophysiological research has demonstrated that HR and skin temperature are effective in detecting ANS activities, thereby revealing these subtle changes. However, traditional HR tools are generally more costly and less portable, while skin temperature analysis usually necessitates extensive manual processing. Advances in remote-PPG and automatic thermal ROI detection algorithms have been developed to address these issues, yet their accuracy in practical applications remains limited. This study aims to bridge this gap by integrating r-PPG with thermal imaging to enhance prediction performance. Ninety participants completed a 20-minute questionnaire to induce cognitive stress, followed by watching a film aimed at eliciting moral elevation. The results demonstrate that the combination of r-PPG and thermal imaging effectively detects emotional shifts. Using r-PPG alone, the prediction accuracy was 77% for cognitive stress and 61% for moral elevation, as determined by SVM. Thermal imaging alone achieved 79% accuracy for cognitive stress and 78% for moral elevation, utilizing a RF algorithm. An early fusion strategy of these modalities significantly improved accuracies, achieving 87% for cognitive stress and 83% for moral elevation using RF. Further analysis, which utilized statistical metrics and explainable machine learning methods including SHAP, highlighted key features and clarified the relationship between cardiac responses and facial temperature variations. Notably, it was observed that cardiovascular features derived from r-PPG models had a more pronounced influence in data fusion, despite thermal imaging's higher predictive accuracy in unimodal analysis.Comment: 28 pages, 6 figure
    • …
    corecore