59 research outputs found

    Physical Relation of Source I to IRc2 in the Orion KL Region

    Full text link
    We present mid-infrared narrow-band images of the Orion BN/KL region, and N-band low-resolution spectra of IRc2 and the nearby radio source "I." The distributions of the silicate absorption strength and the color temperature have been revealed with a sub-arcsecond resolution. The detailed structure of the 7.8 micron/12.4 micron color temperature distribution was resolved in the vicinity of IRc2. A mid-infrared counterpart to source I has been detected as a large color temperature peak. The color temperature distribution shows an increasing gradient from IRc2 toward source I, and no dominant temperature peak is seen at IRc2. The spectral energy distribution of IRc2 could be fitted by a two-temperature component model, and the "warmer component" of the infrared emission from IRc2 could be reproduced by scattering of radiation from source I. IRc2 itself is not self-luminous, but is illuminated and heated by an embedded luminous young stellar object located at source I.Comment: 20 pages, 11 figures. Minor corrections had been done in the ver.2. Accepted for publication in PAS

    Crystalline Silicate Feature of the Vega-like star HD145263

    Full text link
    We have observed the 8-13 μ\mum spectrum (R\sim250) of the Vega-like star candidate HD145263 using Subaru/COMICS. The spectrum of HD145263 shows the broad trapezoidal silicate feature with the shoulders at 9.3 μ\mum and 11.44 μ\mum, indicating the presence of crystalline silicate grains. This detection implies that crystalline silicate may also be commonly present around Vega-like stars. The 11.44 μ\mum feature is slightly shifted to a longer wavelength compared to the usual 11.2-3 μ\mum crystalline forsterite feature detected toward Herbig Ae/Be stars and T Tauri stars. Although the peak shift due to the effects of the grain size can not be ruled out, we suggest that Fe-bearing crystalline olivine explains the observed peak wavelength fairly well. Fe-bearing silicates are commonly found in meteorites and most interplanetary dust particles, which originate from planetesimal-like asteroids. According to studies of meteorites, Fe-bearing silicate must have been formed in asteroidal planetesimals, supporting the scenario that dust grains around Vega-like stars are of planetesimal origin, if the observed 11.44 μ\mum peak is due to Fe-bearing silicates.Comment: accepted for Publication in ApJ

    Data Compression for optical movie data of the Tomo-e Gozen

    Get PDF
    Open House, ISM in Tachikawa, 2017.6.16統計数理研究所オープンハウス(立川)、H29.6.16ポスター発

    Photometry and Polarimetry of 2010 XC15_{15}: Observational Confirmation of E-type Near-Earth Asteroid Pair

    Full text link
    Asteroid systems such as binaries and pairs are indicative of physical properties and dynamical histories of the Small Solar System Bodies. Although numerous observational and theoretical studies have been carried out, the formation mechanism of asteroid pairs is still unclear, especially for near-Earth asteroid (NEA) pairs. We conducted a series of optical photometric and polarimetric observations of a small NEA 2010 XC15_{15} in 2022 December to investigate its surface properties. The rotation period of 2010 XC15_{15} is possibly a few to several dozen hours and color indices of 2010 XC15_{15} are derived as gr=0.435±0.008g-r=0.435\pm0.008, ri=0.158±0.017r-i=0.158\pm0.017, and rz=0.186±0.009r-z=0.186\pm0.009 in the Pan-STARRS system. The linear polarization degrees of 2010 XC15_{15} are a few percent at the phase angle range of 58^{\circ} to 114^{\circ}. We found that 2010 XC15_{15} is a rare E-type NEA on the basis of its photometric and polarimetric properties. Taking the similarity of not only physical properties but also dynamical integrals and the rarity of E-type NEAs into account, we suppose that 2010 XC15_{15} and 1998 WT24_{24} are of common origin (i.e., asteroid pair). These two NEAs are the sixth NEA pair and first E-type NEA pair ever confirmed, possibly formed by rotational fission. We conjecture that the parent body of 2010 XC15_{15} and 1998 WT24_{24} was transported from the main-belt through the ν6\nu_6 resonance or Hungaria region.Comment: Resubmitted to AAS Journals. Any comments are welcom
    corecore