62 research outputs found
Efficient Diverse Ensemble for Discriminative Co-Tracking
Ensemble discriminative tracking utilizes a committee of classifiers, to
label data samples, which are in turn, used for retraining the tracker to
localize the target using the collective knowledge of the committee. Committee
members could vary in their features, memory update schemes, or training data,
however, it is inevitable to have committee members that excessively agree
because of large overlaps in their version space. To remove this redundancy and
have an effective ensemble learning, it is critical for the committee to
include consistent hypotheses that differ from one-another, covering the
version space with minimum overlaps. In this study, we propose an online
ensemble tracker that directly generates a diverse committee by generating an
efficient set of artificial training. The artificial data is sampled from the
empirical distribution of the samples taken from both target and background,
whereas the process is governed by query-by-committee to shrink the overlap
between classifiers. The experimental results demonstrate that the proposed
scheme outperforms conventional ensemble trackers on public benchmarks.Comment: CVPR 2018 Submissio
Efficient Version-Space Reduction for Visual Tracking
Discrminative trackers, employ a classification approach to separate the
target from its background. To cope with variations of the target shape and
appearance, the classifier is updated online with different samples of the
target and the background. Sample selection, labeling and updating the
classifier is prone to various sources of errors that drift the tracker. We
introduce the use of an efficient version space shrinking strategy to reduce
the labeling errors and enhance its sampling strategy by measuring the
uncertainty of the tracker about the samples. The proposed tracker, utilize an
ensemble of classifiers that represents different hypotheses about the target,
diversify them using boosting to provide a larger and more consistent coverage
of the version-space and tune the classifiers' weights in voting. The proposed
system adjusts the model update rate by promoting the co-training of the
short-memory ensemble with a long-memory oracle. The proposed tracker
outperformed state-of-the-art trackers on different sequences bearing various
tracking challenges.Comment: CRV'17 Conferenc
Active Collaboration of Classifiers for Visual Tracking
Recently, discriminative visual trackers obtain state-of-the-art performance, yet they suffer in the presence of different real-world challenges such as target motion and appearance changes. In a discriminative tracker, one or more classifiers are employed to obtain the target/nontarget label for the samples, which in turn determine the target’s location. To cope with variations of the target shape and appearance, the classifier(s) are updated online with different samples of the target and the background. Sample selection, labeling, and updating the classifier are prone to various sources of errors that drift the tracker. In this study, we motivate, conceptualize, realize, and formalize a novel active co-tracking framework, step by step to demonstrate the challenges and generic solutions for them. In this framework, not only classifiers cooperate in labeling the samples but also exchange their information to robustify the labeling, improve the sampling, and realize efficient yet effective updating. The proposed framework is evaluated against state-of-the-art trackers on public dataset and showed promising results
Active Collaborative Ensemble Tracking
A discriminative ensemble tracker employs multiple classifiers, each of which
casts a vote on all of the obtained samples. The votes are then aggregated in
an attempt to localize the target object. Such method relies on collective
competence and the diversity of the ensemble to approach the target/non-target
classification task from different views. However, by updating all of the
ensemble using a shared set of samples and their final labels, such diversity
is lost or reduced to the diversity provided by the underlying features or
internal classifiers' dynamics. Additionally, the classifiers do not exchange
information with each other while striving to serve the collective goal, i.e.,
better classification. In this study, we propose an active collaborative
information exchange scheme for ensemble tracking. This, not only orchestrates
different classifier towards a common goal but also provides an intelligent
update mechanism to keep the diversity of classifiers and to mitigate the
shortcomings of one with the others. The data exchange is optimized with regard
to an ensemble uncertainty utility function, and the ensemble is updated via
co-training. The evaluations demonstrate promising results realized by the
proposed algorithm for the real-world online tracking.Comment: AVSS 2017 Submissio
Efficient Asymmetric Co-Tracking using Uncertainty Sampling
Adaptive tracking-by-detection approaches are popular for tracking arbitrary
objects. They treat the tracking problem as a classification task and use
online learning techniques to update the object model. However, these
approaches are heavily invested in the efficiency and effectiveness of their
detectors. Evaluating a massive number of samples for each frame (e.g.,
obtained by a sliding window) forces the detector to trade the accuracy in
favor of speed. Furthermore, misclassification of borderline samples in the
detector introduce accumulating errors in tracking. In this study, we propose a
co-tracking based on the efficient cooperation of two detectors: a rapid
adaptive exemplar-based detector and another more sophisticated but slower
detector with a long-term memory. The sampling labeling and co-learning of the
detectors are conducted by an uncertainty sampling unit, which improves the
speed and accuracy of the system. We also introduce a budgeting mechanism which
prevents the unbounded growth in the number of examples in the first detector
to maintain its rapid response. Experiments demonstrate the efficiency and
effectiveness of the proposed tracker against its baselines and its superior
performance against state-of-the-art trackers on various benchmark videos.Comment: Submitted to IEEE ICSIPA'201
Robust Model Selection for Classification of Microarrays
Recently, microarray-based cancer diagnosis systems have been increasingly investigated. However, cost reduction and reliability assurance of such diagnosis systems are still remaing problems in real clinical scenes. To reduce the cost, we need a supervised classifier involving the smallest number of genes, as long as the classifier is sufficiently reliable. To achieve a reliable classifier, we should assess candidate classifiers and select the best one. In the selection process of the best classifier, however, the assessment criterion must involve large variance because of limited number of samples and non-negligible observation noise. Therefore, even if a classifier with a very small number of genes exhibited the smallest leave-one-out cross-validation (LOO) error rate, it would not necessarily be reliable because classifiers based on a small number of genes tend to show large variance. We propose a robust model selection criterion, the min-max criterion, based on a resampling bootstrap simulation to assess the variance of estimation of classification error rates. We applied our assessment framework to four published real gene expression datasets and one synthetic dataset. We found that a state-of-the-art procedure, weighted voting classifiers with LOO criterion, had a non-negligible risk of selecting extremely poor classifiers and, on the other hand, that the new min-max criterion could eliminate that risk. These finding suggests that our criterion presents a safer procedure to design a practical cancer diagnosis system
Empirical Bayesian significance measure of neuronal spike response
Background: Functional connectivity analyses of multiple neurons provide a powerful bottom-up approach to reveal functions of local neuronal circuits by using simultaneous recording of neuronal activity. A statistical methodology, generalized linear modeling (GLM) of the spike response function, is one of the most promising methodologies to reduce false link discoveries arising from pseudo-correlation based on common inputs. Although recent advancement of fluorescent imaging techniques has increased the number of simultaneously recoded neurons up to the hundreds or thousands, the amount of information per pair of neurons has not correspondingly increased, partly because of the instruments' limitations, and partly because the number of neuron pairs increase in a quadratic manner. Consequently, the estimation of GLM suffers from large statistical uncertainty caused by the shortage in effective information. Results: In this study, we propose a new combination of GLM and empirical Bayesian testing for the estimation of spike response functions that enables both conservative false discovery control and powerful functional connectivity detection. We compared our proposed method's performance with those of sparse estimation of GLM and classical Granger causality testing. Our method achieved high detection performance of functional connectivity with conservative estimation of false discovery rate and q values in case of information shortage due to short observation time. We also showed that empirical Bayesian testing on arbitrary statistics in place of likelihood-ratio statistics reduce the computational cost without decreasing the detection performance. When our proposed method was applied to a functional multi-neuron calcium imaging dataset from the rat hippocampal region, we found significant functional connections that are possibly mediated by AMPA and NMDA receptors. Conclusions: The proposed empirical Bayesian testing framework with GLM is promising especially when the amount of information per a neuron pair is small because of growing size of observed network
- …