17 research outputs found

    Approaches to the Study of Neural Coding of Sound Source Location and Sound Envelope in Real Environments

    Get PDF
    The major functions of the auditory system are recognition (what is the sound) and localization (where is the sound). Although each of these has received considerable attention, rarely are they studied in combination. Furthermore, the stimuli used in the bulk of studies did not represent sound location in real environments and ignored the effects of reverberation. Another ignored dimension is the distance of a sound source. Finally, there is a scarcity of studies conducted in unanesthetized animals. We illustrate a set of efficient methods that overcome these shortcomings. We use the virtual auditory space method (VAS) to efficiently present sounds at different azimuths, different distances and in different environments. Additionally, this method allows for efficient switching between binaural and monaural stimulation and alteration of acoustic cues singly or in combination to elucidate neural mechanisms underlying localization and recognition. Such procedures cannot be performed with real sound field stimulation. Our research is designed to address the following questions: Are IC neurons specialized to process what and where auditory information? How does reverberation and distance of the sound source affect this processing? How do IC neurons represent sound source distance? Are neural mechanisms underlying envelope processing binaural or monaural

    Tuning to Interaural Time Differences across Frequency

    Get PDF
    Interaural time differences (ITDs) are an important cue for azimuthal sound localization. Sensitivity to this cue depends on temporal synchrony to the waveform (i.e., phase locking) that begins in the hair cells and is relayed to the neural comparators. The synchrony function is low-pass. Therefore, it is expected that neural tuning to ITDs will become narrower with frequency according to a 1/frequency function. To test this, we measured ITD tuning across frequency in neurons from the superior olivary complex, the dorsal nucleus of the lateral lemniscus, the inferior colliculus, the auditory thalamus, and the auditory cortex. For some neurons in each nucleus, the ITD tuning width did become systematically narrower by the expected 1/frequency relationship. However, in other neurons the ITD tuning width was nearly constant across frequency. Constant ITD tuning width was infrequently observed in neurons of the superior olivary complex but was common in neurons in structures above the superior olivary complex. The nearly constant ITD tuning was caused both by sharper ITD tuning at low frequencies and broader tuning at higher frequencies within the low-frequency band. Neurons with nearly constant tuning to ITDs may be the mechanism underlying the perception of ITDs in humans in which just-noticeable differences to changes in ITD decrease by less than the 1/frequency prediction

    Acoustic Cues for Sound Source Distance and Azimuth in Rabbits, a Racquetball and a Rigid Spherical Model

    Get PDF
    There are numerous studies measuring the transfer functions representing signal transformation between a source and each ear canal, i.e., the head-related transfer functions (HRTFs), for various species. However, only a handful of these address the effects of sound source distance on HRTFs. This is the first study of HRTFs in the rabbit where the emphasis is on the effects of sound source distance and azimuth on HRTFs. With the rabbit placed in an anechoic chamber, we made acoustic measurements with miniature microphones placed deep in each ear canal to a sound source at different positions (10–160 cm distance, ±150° azimuth). The sound was a logarithmically swept broadband chirp. For comparisons, we also obtained the HRTFs from a racquetball and a computational model for a rigid sphere. We found that (1) the spectral shape of the HRTF in each ear changed with sound source location; (2) interaural level difference (ILD) increased with decreasing distance and with increasing frequency. Furthermore, ILDs can be substantial even at low frequencies when distance is close; and (3) interaural time difference (ITD) decreased with decreasing distance and generally increased with decreasing frequency. The observations in the rabbit were reproduced, in general, by those in the racquetball, albeit greater in magnitude in the rabbit. In the sphere model, the results were partly similar and partly different than those in the racquetball and the rabbit. These findings refute the common notions that ILD is negligible at low frequencies and that ITD is constant across frequency. These misconceptions became evident when distance-dependent changes were examined
    corecore