45 research outputs found

    Effects of Bitter Receptor Antagonists on Behavioral Lick Responses of Mice

    Get PDF
    Bitter taste receptors TAS2Rs detect noxious compounds in the oral cavity. Recent heterologous expression studies reported that some compounds function as antagonists for human TAS2Rs. For examples, amino acid derivatives such as γ-aminobutyric acid (GABA) and Nα,Nα-bis(carboxymethyl)-L-Lysine (BCML) blocked responses to quinine mediated by human TAS2R4. Probenecid inhibited responses to phenylthiocarbamide mediated by human TAS2R38. In this study, we investigated the effects of these human bitter receptor antagonists on behavioral lick responses of mice to elucidate whether these compounds also function as bitter taste blockers. In short-term (10 s) lick tests, concentration-dependent lick responses to bitter compounds (quinine-HCl, denatonium and phenylthiourea) were not affected by the addition of GABA or BCML. Probenecid reduced aversive lick responses to denatonium and phenylthiourea but not to quinine-HCl. In addition, taste cell responses to phenylthiourea were inhibited by probenecid. These results suggest some bitter antagonists of human TAS2Rs can work for bitter sense of mouse

    Bitter Taste Responses of Gustducin-positive Taste Cells in Mouse Fungiform and Circumvallate Papillae

    Get PDF
    Bitter taste serves as an important signal for potentially poisonous compounds in foods to avoid their ingestion. Thousands of compounds are estimated to taste bitter and presumed to activate taste receptor cells expressing bitter taste receptors (Tas2rs) and coupled transduction components including gustducin, phospholipase Cβ2 (PLCβ2) and transient receptor potential channel M5 (TRPM5). Indeed, some gustducin-positive taste cells have been shown to respond to bitter compounds. However, there has been no systematic characterization of their response properties to multiple bitter compounds and the role of transduction molecules in these cells. In this study, we investigated bitter taste responses of gustducin-positive taste cells in situ in mouse fungiform (anterior tongue) and circumvallate (posterior tongue) papillae using transgenic mice expressing green fluorescent protein in gustducin-positive cells. The overall response profile of gustducin-positive taste cells to multiple bitter compounds (quinine, denatonium, cyclohexamide, caffeine, sucrose octaacetate, tetraethylammonium, phenylthiourea, L-phenylalanine, MgSO4, and high concentration of saccharin) was not significantly different between fungiform and circumvallate papillae. These bitter-sensitive taste cells were classified into several groups according to their responsiveness to multiple bitter compounds. Bitter responses of gustducin-positive taste cells were significantly suppressed by inhibitors of TRPM5 or PLCβ2. In contrast, several bitter inhibitors did not show any effect on bitter responses of taste cells. These results indicate that bitter-sensitive taste cells display heterogeneous responses and that TRPM5 and PLCβ2 are indispensable for eliciting bitter taste responses of gustducin-positive taste cells

    Cellular mechanisms of taste disturbance induced by the non-steroidal anti-inflammatory drug, diclofenac, in mice

    Get PDF
    Drug-induced taste disorders are a serious problem in an aging society. This study investigated the mechanisms underlying taste disturbances induced by diclofenac, a non-steroidal anti-inflammatory drug that reduces pain and inflammation by inhibiting the synthesis of prostaglandins by cyclooxygenase enzymes (COX-1 and COX-2). RT-PCR analyses demonstrated the expression of genes encoding arachidonic acid pathway components such as COX-1, COX-2 and prostaglandin synthases in a subset of mouse taste bud cells. Double-staining immunohistochemistry revealed that COX-1 and cytosolic prostaglandin E synthase (cPGES) were co-expressed with taste receptor type-1 member-3 (T1R3), a sweet/umami receptor component, or gustducin, a bitter/sweet/umami-related G protein, in a subset of taste bud cells. Long-term administration of diclofenac reduced the expression of genes encoding COX-1, gustducin and cPGES in mouse taste buds and suppressed both the behavioral and taste nerve responses to sweet and umami taste stimuli but not to other tastants. Furthermore, diclofenac also suppressed the responses of both mouse and human sweet taste receptors (T1R2/T1R3, expressed in HEK293 cells) to sweet taste stimuli. These results suggest that diclofenac may suppress the activation of sweet and umami taste cells acutely via a direct action on T1R2/T1R3 and chronically via inhibition of the COX/prostaglandin synthase pathway inducing down-regulated expression of sweet/umami responsive components. This dual inhibition mechanism may underlie diclofenac-induced taste alterations in humans

    Sweet Taste Receptor Expressed in Pancreatic β-Cells Activates the Calcium and Cyclic AMP Signaling Systems and Stimulates Insulin Secretion

    Get PDF
    BACKGROUND:Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. METHODOLOGY/PRINCIPAL FINDINGS:The expression of the sweet taste receptor was determined by RT-PCR and immunohistochemistry. Changes in cytoplasmic Ca(2+) ([Ca(2+)](c)) and cAMP ([cAMP](c)) were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca(2+)](c). The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5)-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca(2+)](c) response. The effect of sucralose on [Ca(2+)](c) was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a G(q) inhibitor. Sucralose also induced sustained elevation of [cAMP](c), which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. CONCLUSIONS:Sweet taste receptor is expressed in beta-cells, and activation of this receptor induces insulin secretion by Ca(2+) and cAMP-dependent mechanisms

    Genetic and Molecular Basis of Individual Differences in Human Umami Taste Perception

    Get PDF
    Umami taste (corresponds to savory in English) is elicited by L-glutamate, typically as its Na salt (monosodium glutamate: MSG), and is one of five basic taste qualities that plays a key role in intake of amino acids. A particular property of umami is the synergistic potentiation of glutamate by purine nucleotide monophosphates (IMP, GMP). A heterodimer of a G protein coupled receptor, TAS1R1 and TAS1R3, is proposed to function as its receptor. However, little is known about genetic variation of TAS1R1 and TAS1R3 and its potential links with individual differences in umami sensitivity. Here we investigated the association between recognition thresholds for umami substances and genetic variations in human TAS1R1 and TAS1R3, and the functions of TAS1R1/TAS1R3 variants using a heterologous expression system. Our study demonstrated that the TAS1R1-372T creates a more sensitive umami receptor than -372A, while TAS1R3-757C creates a less sensitive one than -757R for MSG and MSG plus IMP, and showed a strong correlation between the recognition thresholds and in vitro dose - response relationships. These results in human studies support the propositions that a TAS1R1/TAS1R3 heterodimer acts as an umami receptor, and that genetic variation in this heterodimer directly affects umami taste sensitivity

    Modulation of Taste Responsiveness by Angiotensin II

    No full text

    Adrenomedullin Enhances Mouse Gustatory Nerve Responses to Sugars via T1R-Independent Sweet Taste Pathway

    Get PDF
    On the tongue, the T1R-independent pathway (comprising glucose transporters, including sodium-glucose cotransporter (SGLT1) and the K-ATP channel) detects only sugars, whereas the T1R-dependent (T1R2/T1R3) pathway can broadly sense various sweeteners. Cephalic-phase insulin release, a rapid release of insulin induced by sensory signals in the head after food-related stimuli, reportedly depends on the T1R-independent pathway, and the competitive sweet taste modulators leptin and endocannabinoids may function on these two different sweet taste pathways independently, suggesting independent roles of two oral sugar-detecting pathways in food intake. Here, we examined the effect of adrenomedullin (ADM), a multifunctional regulatory peptide, on sugar sensing in mice since it affects the expression of SGLT1 in rat enterocytes. We found that ADM receptor components were expressed in T1R3-positive taste cells. Analyses of chorda tympani (CT) nerve responses revealed that ADM enhanced responses to sugars but not to artificial sweeteners and other tastants. Moreover, ADM increased the apical uptake of a fluorescent D-glucose derivative into taste cells and SGLT1 mRNA expression in taste buds. These results suggest that the T1R-independent sweet taste pathway in mouse taste cells is a peripheral target of ADM, and the specific enhancement of gustatory nerve responses to sugars by ADM may contribute to caloric sensing and food intake

    Diurnal Variation of Sweet Taste Recognition Thresholds Is Absent in Overweight and Obese Humans

    No full text
    Sweet taste thresholds are positively related to plasma leptin levels in normal weight humans: both show parallel diurnal variations and associations with postprandial glucose and insulin rises. Here, we tested whether this relationship also exists in overweight and obese (OW/Ob) individuals with hyperleptinemia. We tested 36 Japanese OW/Ob subjects (body mass index (BMI) > 25 kg/m2) for recognition thresholds for various taste stimuli at seven different time points from 8:00 a.m. to 10:00 p.m. using the staircase methodology, and measured plasma leptin, insulin, and blood glucose levels before each taste threshold measurement. We also used the homeostatic model assessment of insulin resistance (HOMA-IR) to evaluate insulin resistance. The results demonstrated that, unlike normal weight subjects, OW/Ob subjects showed no significant diurnal variations in the recognition thresholds for sweet stimuli but exhibited negative associations between the diurnal variations of both leptin and sweet recognition thresholds and the HOMA-IR scores. These findings suggest that in OW/Ob subjects, the basal leptin levels (~20 ng/mL) may already exceed leptin’s effective concentration for the modulation of sweet sensitivity and that this leptin resistance-based attenuation of the diurnal variations of the sweet taste recognition thresholds may also be indirectly linked to insulin resistance in OW/Ob subjects
    corecore