170 research outputs found
p16 Overexpression: A Potential Early Indicator of Transformation in Ovarian Carcinoma
Objective: The recently cloned gene p16 (MST 1) has been identified as a putative tumor suppressor gene that binds to CDK4 and CDK6 (cyclin-dependent kinases), preventing their interaction with cyclin D1 and thereby preventing cell cycle progression at the G1 stage. In addition, the p16 gene has been shown to have a high frequency of mutation in some tumor cell lines; however, it has also been shown that a much lower frequency of mutation occurs in primary tumors. This study investigated the mRNA expression level and mutation status of the p16 gene in ovarian tumors. Methods: We performed quantitative polymerase chain reaction and direct cDNA sequencing analysis. To confirm the p16 protein level in ovarian tumors, Western blotting and immunohistochemical staining were performed. Expression levels of mRNA for the p16 gene relative to the Ξ²-tubulin gene were examined in 32 ovarian tumors (24 carcinomas, six low malignant potential tumors, and two benign tumors) and six normal ovaries. Results: The mRNA expression level of p16 was significantly elevated in 28 ovarian tumors (22 carcinomas, five low malignant potential tumors, and one benign tumor) compared with that of normal ovaries. Western blotting analysis and immunohistochemical staining confirmed elevated p16 protein levels in ovarian tumor samples. Among 32 ovarian tumors, cDNA sequencing of the p16 gene showed no p16 mutation resulting in a coding error, although one silent mutation and three polymorphisms were found. Conclusions: Although p16 is seldom mutated in ovarian tumors, the overexpression of p16 in most ovarian tumor cases indicates a dysfunction in the regulatory complex for G1 arrest. Therefore, overexpression of p16 may be an important early event in the neoplastic transformation of the ovarian epithelium.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68382/2/10.1177_107155769700400209.pd
The inhibitory effect of an RGD-human chitin-binding domain fusion protein on the adhesion of fibroblasts to reacetylated chitosan films
Biomaterials used for tissue engineering applications must provide a structural support for the tissue development and also actively interact with cells, promoting adhesion, proliferation, and differentiation. To achieve this goal, adhesion molecules may be used, such as the tripeptide Arg-Gly-Asp (RGD). A method based on the use of a carbohydrate-binding module, with affinity for chitin, was tested as an alternative approach to the chemical grafting of bioactive peptides. This approach would simultaneously allow the production of recombinant peptides (alternatively to peptide synthesis) and provide a simple way for the specific and strong adsorption of the peptides to the biomaterial.
A fusion recombinant protein, containing the RGD sequence fused to a human chitin-binding module (ChBM), was expressed in E. coli. The adhesion of fibroblasts to reacetylated chitosan (RC) films was the model system selected to analyze the properties of the obtained proteins. Thus, the evaluation of cell attachment and proliferation on polystyrene surfaces and reacetylated chitosan films, coated with the recombinant proteins, was performed using mouse embryo fibroblasts 3T3. The results show that the recombinant proteins affect negatively fibroblasts anchorage to the materials surface, inhibiting its adhesion and proliferation. We also conclude that this negative effect is fundamentally due to the human chitin-binding domain.Fundação para a CiΓͺncia e a Tecnologia (FCT) - SFRH/BD/27359/2006, POCTI/BIO/45356/200
Expression and prognostic significance of cox-2 and p-53 in hodgkin lymphomas: a retrospective study
<p>Abstract</p> <p>Background</p> <p>Cyclooxygenase (cox) is the rate-limiting enzyme, which catalyzes the conversion of arachidonic acid into prostaglandins and contributes to the inflammatory process. Cyclooxygenase-2 (cox-2), which is one of the two isoforms, plays a role in tumor progression and carcinogenesis. p53 contributes to apoptosis, DNA renewal and cell cycle. Studies concerning the relationship of cox-2 and p53 expressions and carcinogenesis are available, but the association between cox-2 and p53 in Hodgkin lymphoma (HL) is not exactly known.</p> <p>In our study, we examined the association of cox-2 and p53 expression, with age, stage, histopathological subtype, and survival in HL. We also examined correlation between cox-2 and p53 expression.</p> <p>Methods</p> <p>Cox-2 and p53 expressions in Hodgkin-Reed Sternberg cells (HRS) were examined in 54 patients with HL depending on cox-2 expression, stained cases were classified as positive, and unstained cases as negative. Nuclear staining of HRS cells with p53 was evaluated as positive. The classifications of positivity were as follows: negative if<10%; (1+) if 10-25%; (2+) if 25-50%; (3+) if 50-75%, (4+) if >75%.</p> <p>Results</p> <p>Cox-2 and p53 expressions were found in 49 (80%) and 29 (46%) patients, respectively. There were differences between histological subtypes according to cox-2 expression (p = 0.012). Mixed cellular (MC) and nodular sclerosing (NS) subtypes were seen most of the patients and cox-2 expression was evaluated mostly in the mixed cellular subtype.</p> <p>There were no statistically significant relationships between p53 and the histopathological subtypes; or between p53, cox-2 and the factors including stage, age and survival; or between p53 and cox-2 expression (p > 0.05).</p> <p>Conclusion</p> <p>Considering the significant relationship between the cox-2 expression and the subtypes of HL, cox-2 expression is higher in MC and NS subtypes. However the difference between these two subtypes was not significant. This submission must be advocated by studies with large series</p
Immunofluorometric quantitation and histochemical localisation of kallikrein 6 protein in ovarian cancer tissue: a new independent unfavourable prognostic biomarker
Human kallikrein 6 protein is a newly discovered human kallikrein. We determined the amount of human kallikrein 6 in extracts of 182 ovarian tumours and correlated specific activity (ngβhK6βmgβ1 total protein) with clinicopathological variables documented at the time of surgical excision and with outcome (progression free survival, overall survival) monitored over a median interval of 62 months. Thirty per cent of the tumours were positive for human kallikrein 6 (>35βng hK6βmgβ1 total protein). Human kallikrein 6-specific immunohistochemical staining of four ovarian tissues that included benign, borderline and malignant lesions indicated a cytoplasmic location of human kallikrein 6 in tumour cells of epithelial origin, although the intensity of staining was variable. Tumour human kallikrein 6 (ngβhK6βmgβ1 total protein) was higher in late stage disease, serous histotype, residual tumour >1βcm and suboptimal debulking (>1βcm) (P<0.05). Univariate analysis revealed that patients with tumour human kallikrein 6 positive specific activity were more likely to suffer progressive disease and to die (hazard ratio 1.71 (P=0.015) and 1.88 (P=0.022), respectively). Survival curves demonstrated the same (P=0.013 and 0.019, respectively). Multivariate analysis revealed that human kallikrein 6 positivity was retained as an independent prognostic variable in several subgroups of patients, namely those with (low) grade I and II tumours (hazard ratio progression free survival 4.3 (P=0.027) and overall survival 4.1 (P=0.023)) and those with optimal debulking (hazard ratio progression free survival 3.8 (P=0.019) and overall survival 5.6 (P=0.011)). We conclude that tumour kallikrein 6 protein levels have utility as an independent adverse prognostic marker in a subgroup of ovarian cancer patients with otherwise apparently good prognosis
Desmoglein 2 is a substrate of kallikrein 7 in pancreatic cancer
<p>Abstract</p> <p>Background</p> <p>In a previous report we have demonstrated that the chymotryptic-like serine protease kallikrein 7 (<it>KLK7</it>/hK7) is overexpressed in pancreatic cancer. In normal skin, hK7 is thought to participate in skin desquamation by contributing in the degradation of desmosomal components, such as desmogleins. Thus, the ability of hK7 to degrade desmogleins was assessed and the effect of hK7 expression on desmoglein 2 was examined in cultured pancreatic cancer cells.</p> <p>Methods</p> <p>The expression of Dsg1, Dsg2, and Dsg3 in pancreatic tissues was examined by immunohistochemistry and their expression in two pancreatic cancer cell lines, BxPC-3 and Panc-1, was determined by western blot analysis. The ability of hK7 to degrade Dsg1 and Dsg2 was investigated using <it>in vitro </it>degradation assays. BxPC-3 cells stably transfected to overexpress hK7 were used to examine the effect of hK7 on cell-surface resident Dsg2.</p> <p>Results</p> <p>The levels of immunoreactive Dsg1 and Dsg2 were reduced in pancreatic adenocarcinomas compared with both normal pancreatic and chronic pancreatitis tissues. Among the desmosomal proteins examined, Dsg2 exhibited robust expression on the surface of BxPC-3 cells. When hK7 was overexpressed in this cell line, there was a significant increase in the amount of soluble Dsg2 released into the culture medium compared with vector-transfected control cells.</p> <p>Conclusion</p> <p>A reduction in the amount of the cell adhesion components Dsg1 and Dsg2 in pancreatic tumors suggests that loss of these desmosomal proteins may play a role in pancreatic cancer invasion. Using <it>in vitro </it>degradation assays, both Dsg1 and Dsg2 could be readily proteolyzed by hK7, which is overexpressed in pancreatic adenocarcinomas. The enforced expression of hK7 in BxPC-3 cells that express significant amounts of Dsg2 resulted in a marked increase in the shedding of soluble Dsg2, which is consistent with the notion that aberrant expression of hK7 in pancreatic tumors may result in diminished cell-cell adhesion and facilitate tumor cell invasion.</p
Cytogenetic alterations in ovarian clear cell carcinoma detected by comparative genomic hybridisation
Ovarian clear cell carcinoma (OCCC) accounts for a small but significant proportion of all ovarian cancers and is a distinct clinical and pathological entity. It tends to be associated with poorer response rates to chemotherapy and with a worse prognosis. Little is known about possible underlying genetic changes. DNA extracted from paraffin-embedded samples of 18 pure OCCC cases was analysed for genetic imbalances using comparative genomic hybridisation (CGH). All of the 18 cases showed genomic alterations. The mean number of alterations detected by CGH was 6 (range 1β15) indicating a moderate level of genetic instability. Chromosome deletions were more common than amplifications. The most prominent change involved chromosome 9 deletions in 10 cases (55%). This correlates with changes seen in other epithelial ovarian cancers. This deletion was confirmed using microsatellite markers to assess loss of heterozygosity (LOH) at four separate loci on chromosome 9. The most distinct region of loss detected was around the IFNA marker at 9p21 with 41% (11 out of 27cases) LOH. Other frequent deletions involved 1p (five out of 18; 28%); 11q (four out of 18; 22%) and 16 (five out of 18; 28%). Amplification was most common at chromosome 3 (six out of 18; 33%); 13q (four out of 18; 22%) and 15 (three out of 18; 17%). No high-level amplifications were identified. These features may serve as useful prognostic indicators in the management of OCCC
- β¦