31 research outputs found

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Solitary Lung Tumors and Their Spontaneous Metastasis in Athymic Nude Mice Orthotopically Implanted with Human Non-Small Cell Lung Cancer

    Get PDF
    We examined the tumorigenic and metastatic potentials of three human non-small cell lung cancer (NSCLC) cell lines. PC-14, A549 or Lu-99 cell lines suspended in Matrigel-containing phosphate-buffered saline were orthotopically implanted into the lungs of nude mice. The formation of a solitary tumor nodule in the lung was observed after the implantation of all cell lines. Intrapulmonary implantation of PC-14 or Lu-99 cells resulted in spontaneous distant metastases. In contrast, A549 cells caused multiple intrapulmonary metastases to the right and left lobes of the lung without producing visible lymphatic metastasis. We also investigated the expression of matrix metal loproteinases (MMPs), urokinase-type plasminogen activator (u-PA), u-PA receptor (u-PAR) and c-MET in these cell lines in vitro and in vivo. Reverse transcription polymerase chain reaction (RT-PCR) analysis showed that the expression of MMP-2 and membrane-type 1 MMP (MT1-MMP) was elevated in PC-14 as compared with the other two cell lines. In contrast, stronger expression of c-METwas observed in A549 than in PC-14 or Lu-99. These results indicate that differential patterns of metastasis of lung cancer might be associated with differential expression of metastasis-associated molecules. Our orthotopic implantation models display clinical features resembling those of NSCLC, may provide a useful basis for lung cancer research

    Differential Diagnosis between Low-Grade and High-Grade Astrocytoma Using System A Amino Acid Transport PET Imaging with C-11-MeAIB: A Comparison Study with C-11-Methionine PET Imaging

    No full text
    Introductions. [N-methyl-C-11]α-Methylaminoisobutyric acid (MeAIB) is an artificial amino acid radiotracer used for PET study, which is metabolically stable in vivo. In addition, MeAIB is transported by system A neutral amino acid transport, which is observed ubiquitously in all types of mammalian cells. It has already been shown that MeAIB-PET is useful for malignant lymphoma, head and neck cancers, and lung tumors. However, there have been no reports evaluating the usefulness of MeAIB-PET in the diagnosis of brain tumors. The purpose of this study is to investigate the efficacy of system A amino acid transport PET imaging, MeAIB-PET, in clinical brain tumor diagnosis compared to [S-methyl-C-11]-L-methionine (MET)-PET. Methods. Thirty-one consecutive patients (male: 16, female: 15), who were suspected of having brain tumors, received both MeAIB-PET and MET-PET within a 2-week interval. All patients were classified into two groups: Group A as a benign group, which included patients who were diagnosed as low-grade astrocytoma, grade II or less, or other low-grade astrocytoma (n=12) and Group B as a malignant group, which included patients who were diagnosed as anaplastic astrocytoma, glioblastoma multiforme (GBM), or recurrent GBM despite prior surgery or chemoradiotherapy (n=19). PET imaging was performed 20 min after the IV injection of MeAIB and MET, respectively. Semiquantitative analyses of MeAIB and MET uptake using SUVmax and tumor-to-contralateral normal brain tissue (T/N) ratio were evaluated to compare these PET images. ROC analyses for the diagnostic accuracy of MeAIB-PET and MET-PET were also calculated. Results. In MeAIB-PET imaging, the SUVmax was 1.20 ± 1.29 for the benign group and 2.94 ± 1.22 for the malignant group (p<0.005), and the T/N ratio was 3.77 ± 2.39 for the benign group and 16.83 ± 2.39 for the malignant group (p<0.005). In MET-PET, the SUVmax was 3.01 ± 0.94 for the benign group and 4.72 ± 1.61 for the malignant group (p<0.001), and the T/N ratio was 2.64 ± 1.40 for the benign group and 3.21 ± 1.14 for the malignant group (n.s.). For the analysis using the T/N ratio, there was a significant difference between the benign and malignant groups with MeAIB-PET with p<0.001. The result of ROC analysis using the T/N ratio indicated a better diagnosis accuracy for MeAIB-PET for brain tumors than MET-PET (p<0.001). Conclusions. MeAIB, a system A amino acid transport-specific radiolabeled agents, could provide better assessments for detecting malignant type brain tumors. In a differential diagnosis between low-grade and high-grade astrocytoma, MeAIB-PET is a useful diagnostic imaging tool, especially in evaluations using the T/N ratio. Clinical trial registration. This trial was registered with UMIN000032498

    Differential Diagnosis between Low-Grade and High-Grade Astrocytoma Using System A Amino Acid Transport PET Imaging with C-11-MeAIB: A Comparison Study with C-11-Methionine PET Imaging

    No full text
    Introductions. [N-methyl-C-11]α-Methylaminoisobutyric acid (MeAIB) is an artificial amino acid radiotracer used for PET study, which is metabolically stable in vivo. In addition, MeAIB is transported by system A neutral amino acid transport, which is observed ubiquitously in all types of mammalian cells. It has already been shown that MeAIB-PET is useful for malignant lymphoma, head and neck cancers, and lung tumors. However, there have been no reports evaluating the usefulness of MeAIB-PET in the diagnosis of brain tumors. The purpose of this study is to investigate the efficacy of system A amino acid transport PET imaging, MeAIB-PET, in clinical brain tumor diagnosis compared to [S-methyl-C-11]-L-methionine (MET)-PET. Methods. Thirty-one consecutive patients (male: 16, female: 15), who were suspected of having brain tumors, received both MeAIB-PET and MET-PET within a 2-week interval. All patients were classified into two groups: Group A as a benign group, which included patients who were diagnosed as low-grade astrocytoma, grade II or less, or other low-grade astrocytoma (n=12) and Group B as a malignant group, which included patients who were diagnosed as anaplastic astrocytoma, glioblastoma multiforme (GBM), or recurrent GBM despite prior surgery or chemoradiotherapy (n=19). PET imaging was performed 20 min after the IV injection of MeAIB and MET, respectively. Semiquantitative analyses of MeAIB and MET uptake using SUVmax and tumor-to-contralateral normal brain tissue (T/N) ratio were evaluated to compare these PET images. ROC analyses for the diagnostic accuracy of MeAIB-PET and MET-PET were also calculated. Results. In MeAIB-PET imaging, the SUVmax was 1.20 ± 1.29 for the benign group and 2.94 ± 1.22 for the malignant group (p<0.005), and the T/N ratio was 3.77 ± 2.39 for the benign group and 16.83 ± 2.39 for the malignant group (p<0.001). In MET-PET, the SUVmax was 3.01 ± 0.94 for the benign group and 4.72 ± 1.61 for the malignant group (p<0.005), and the T/N ratio was 2.64 ± 1.40 for the benign group and 3.21 ± 1.14 for the malignant group (n.s.). For the analysis using the T/N ratio, there was a significant difference between the benign and malignant groups with MeAIB-PET with p<0.001. The result of ROC analysis using the T/N ratio indicated a better diagnosis accuracy for MeAIB-PET for brain tumors than MET-PET (p<0.01). Conclusions. MeAIB, a system A amino acid transport-specific radiolabeled agents, could provide better assessments for detecting malignant type brain tumors. In a differential diagnosis between low-grade and high-grade astrocytoma, MeAIB-PET is a useful diagnostic imaging tool, especially in evaluations using the T/N ratio. Clinical trial registration. This trial was registered with UMIN000032498
    corecore