3 research outputs found

    Evaluating Phthalate Contaminant Migration Using Thermal Desorption–Gas Chromatography–Mass Spectrometry (TD–GC–MS)

    No full text
    This study describes a methodology for evaluating regulatory levels of phthalate contamination. By collecting experimental data on short-term phthalate migration using thermal desorption–gas chromatography–mass spectrometry (TD–GC–MS), the migration of di(2-ethylhexyl) phthalate (DEHP) from polyvinyl chloride (PVC) to polyethylene (PE) was found to be expressed by the Fickian approximation model, which was originally proposed for solid (PVC)/liquid (solvent) migration of phthalates. Consequently, good data correlation was obtained using the Fickian approximation model with a diffusion coefficient of 4.2 × 10−12 cm2/s for solid (PVC)/ solid (PE) migration of DEHP at 25 °C. Results showed that temporary contact with plasticized polymers under a normal, foreseeable condition may not pose an immediate risk of being contaminated by phthalates at regulatory levels. However, as phthalates are small organic molecules designed to be dispersed in a variety of polymers as plasticizers at a high compounding ratio, the risk of migration-related contamination can be high in comparison with other additives, especially under high temperatures. With these considerations in mind, the methodology for examining regulatory levels of phthalate contamination using TD–GC–MS has been successfully demonstrated from the viewpoint of its applicability to solid (PVC)/solid (PE) migration of phthalates

    Simultaneous Screening of Major Flame Retardants and Plasticizers in Polymer Materials Using Pyrolyzer/Thermal Desorption Gas Chromatography Mass Spectrometry (Py/TD–GC–MS)

    No full text
    This study was conducted with the aim of achieving the simultaneous screening of various additives in polymer materials by utilizing a solvent-free pyrolyzer/thermal desorption gas chromatography mass spectrometry (Py/TD-GC–MS) method. As a first step to achieve this goal, simultaneous screening has been examined by selecting major substances representing plasticizers and flame retardants, such as short chain chlorinated paraffins (SCCPs), decabromodiphenyl ether (DecaBDE), hexabromocyclododecane (HBCDD), and di(2-ethylhexyl) phthalate (DEHP). A quantitative MS analysis was performed to check for the peak areas and sensitivities. Since Py/TD-GC–MS is fraught with the risk of thermal degradation of the sample, temperatures during the analytical process were finely tuned for securing reliable results. The instrumental sensitivity was confirmed by the S/N ratio on each component. The detection limits of all components were less than 50 mg/kg, which are sufficiently lower than the regulatory criteria. With regard to reproducibility, a relative standard deviation (RSD) of about 5% was confirmed by employing a spike recovery test on a polystyrene polymer solution containing mixed standard solution (ca. 1000 mg/kg). In conclusion, the results obtained in this study indicate that Py/TD-GC–MS is applicable for the screening of major flame retardants and plasticizers in real samples with sufficient reproducibility at regulatory levels
    corecore