564 research outputs found

    Factors affecting wood, energy grass and straw pellet durability – A review

    Get PDF
    Pellets produced from wood, energy grasses and straw present a higher energy density feedstock than wood chips or bales, and therefore reduce the costs of handling, transport and storage throughout the supply chain. European specifications provide limits to the proportion of fines (particles less than 3.15 mm) allowed in pellets, which refers to the durability of the pellets. Fines have implications for health and safety in supply chains, and cause issues with slag formation in combustion systems. This paper reviews the factors affecting biomass pellet durability. The industrial trade for wood pellets has expanded greatly over the last decade and involves the international trade of tens of million tonnes annually. Due to increasing demands for pellets, there has been growing interest in utilising more varied biomass types. The aim of this review is to examine feedstock qualities and pelleting conditions that produce durable pellets. Pellet durability can be affected by the feedstock characteristics, the moisture content or size reduction during pre-processing, and by pelleting conditions, including the use of binders, feedstock mixes, temperatures or die pressures. Post-production conditions can also affect durability, such as the storage conditions and handling frequency, therefore an understanding of all the factors affecting durability throughout the supply chain is needed in order to prioritise where advances can be made

    Bioenergy from plants and the sustainable yield challenge

    Get PDF

    How well does Miscanthus ensile for use in an anaerobic digestion plant?

    Get PDF
    This study examined the ability for early-harvested Miscanthus (Miscanthus x giganteus and Miscanthus sacchariflorus) to be stored in silage for later use in anaerobic digestion. Two silage additives favouring a homo and hetero-fermentation pathway were examined. The results show that silage additives are necessary to effectively ensile Miscanthus, otherwise untreated Miscanthus grasses incurred dry matter losses of 4% during three months' storage. The silage additives improved the lactic and acetic acid production in the Miscanthus silages however did not have any effect on the biogas yield. On a ‘per tonne volatile solids’-basis, Miscanthus produces half the biogas yield of maize. The outlook for the use of Miscanthus AD therefore depends on the yield when harvested in autumn. A minimum yield of 19–26.5 t DM/ha is needed for Miscanthus to match the biogas production from a similar area of maize yielding 10–14 t DM/ha

    Towards stability of food production and farm income in a variable climate

    Get PDF
    Stable food production is vital for food security. Stability of farm income is also necessary to ensure the sustainability of food production and to protect livelihoods, in a changing climate. We analyse the relative effects of climate variability, subsidies and farming practices on the stability of food production and farm income. We examine farms in England and Wales between 2005 and 2017, and link farms to climate data at a sub-regional scale. Our results show that variability in temperature and rainfall reduces the stability of farm income and food production. While variability in climate can be largely outside of the farmers control our findings indicate that, under current conditions, farm management can have a larger effect on stability than climate. We identified three key aspects of farm management and policy that improve stability: i) increasing agricultural diversity, ii) increasing the efficiency of agrochemical use and iii) agri-environmental management. These management practices have previously been associated with benefits to natural ecosystems and may therefore increase the stability of agriculture whilst reducing negative impacts of farming on the environment. We also found differences in effect size of climate impacts and adaptation options between farm types, emphasising the need for flexible agricultural policies

    A new Rothamsted long-term field experiment for the twenty-first century - principles and practice

    Get PDF
    Agriculture faces potentially competing societal demands to produce food, fiber and fuel while reducing negative environmental impacts and delivering regulating, supporting and cultural ecosystem services. This necessitates a new generation of long-term agricultural field experiments designed to study the behavior of contrasting cropping systems in terms of multiple outcomes. We document the principles and practices of a new long-term experiment of this type at Rothamsted, established at two contrasting sites in 2017 and 2018, and report initial yield data at the crop and system level. The objective of the Large-Scale Rotation Experiment was to establish gradients of system properties and outcomes to improve our fundamental understanding of UK cropping systems. It is composed of four management factors—phased rotations, cultivation (conventional vs reduced tillage), nutrition (additional organic amendment vs standard mineral fertilization) and crop protection (conventional vs smart crop protection). These factors were combined in a balanced design resulting in 24 emergent cropping systems at each site and can be analyzed at the level of the system or component management factors. We observed interactions between management factors and with the environment on crop yields, justifying the systems level, multi-site approach. Reduced tillage resulted in lower wheat yields but the effect varied with rotation, previous-crop and site. Organic amendments significantly increased spring barley yield by 8% on average though the effect again varied with site. The plowed cropping systems tended to produce higher caloric yield overall than systems under reduced tillage. Additional response variables are being monitored to study synergies and trade-offs with outcomes other than yield at the cropping system level. The experiment has been established as a long-term resource for inter-disciplinary research. By documenting the design process, we aim to facilitate the adoption of similar approaches to system-scale agricultural experimentation to inform the transition to more sustainable cropping systems

    Using a Crop Model to Benchmark Miscanthus and Switchgrass

    Get PDF
    Crop yields are important items in the economic performance and the environmental impacts of second-generation biofuels. Since they strongly depend on crop management and pedoclimatic conditions, it is important to compare candidate feedstocks to select the most appropriate crops in a given context. Agro-ecosystem models offer a prime route to benchmark crops, but have been little tested from this perspective thus far. Here, we tested whether an agro-ecosystem model (CERES-EGC) was specific enough to capture the differences between miscanthus and switchgrass in northern Europe. The model was compared to field observations obtained in seven long-term trials in France and the UK, involving different fertilizer input rates and harvesting dates. At the calibration site (Estrées-Mons), the mean deviations between simulated and observed crop biomass yields for miscanthus varied between −0.3 t DM ha−1 and 4.2 t DM ha−1. For switchgrass, simulated yields were within 1.0 t DM ha−1 of the experimental data. Observed miscanthus yields were higher than switchgrass yields in most sites and for all treatments, with one exception. Overall, the model captured the differences between both crops adequately, with a mean deviation of 0.46 t DM ha−1, and could be used to guide feedstock selections over larger biomass supply areas

    The potential for soybean to diversify the production of plant-based protein in the UK

    Get PDF
    Soybean (Glycine max) offers an important source of plant-based protein. Currently much of Europe’s soybean is imported, but there are strong economic and agronomic arguments for boosting local production. Soybean is grown in central and eastern Europe but is less favoured in the North due to climate. We conducted field trials across three seasons and two sites in the UK to test the viability of early-maturing soybean varieties and used the data from these trials to calibrate and validate the Rothamsted Landscape Model. Once validated, the model was used to predict the probability soybean would mature and the associated yield for 26 sites across the UK based on weather data under current, near-future (2041-60) and far-future (2081-2100) climate. Two representative concentration pathways, a midrange mitigation scenario (RCP4.5) and a high emission scenario (RCP8.5) were also explored. Our analysis revealed that under current climate early maturing varieties will mature in the south of the UK, but the probability of failure increases with latitude. Of the 26 sites considered, only at one did soybean mature for every realisation. Predicted expected yields ranged between 1.39 t ha-1 and 1.95 t ha-1 across sites. Under climate change these varieties are likely to mature as far north as southern Scotland. With greater levels of CO2, yield is predicted to increase by as much as 0.5 t ha-1 at some sites in the far future, but this is tempered by other effects of climate change meaning that for most sites no meaningful increase in yield is expected. We conclude that soybean is likely to be a viable crop in the UK and for similar climates at similar latitudes in Northern Europe in the future but that for yields to be economically attractive for local markets, varieties must be chosen to align with the growing season

    Species and Genotype Effects of Bioenergy Crops on Root Production, Carbon and Nitrogen in Temperate Agricultural Soil

    Get PDF
    Bioenergy crops have a secondary benefit if they increase soil organic C (SOC) stocks through capture and allocation below-ground. The effects of four genotypes of short-rotation coppice willow (Salix spp., ‘Terra Nova’ and ‘Tora’) and Miscanthus (M. × giganteus (‘Giganteus’) and M. sinensis (‘Sinensis’)) on roots, SOC and total nitrogen (TN) were quantified to test whether below-ground biomass controls SOC and TN dynamics. Soil cores were collected under (‘plant’) and between plants (‘gap’) in a field experiment on a temperate agricultural silty clay loam after 4- and 6-years’ management. Root density was greater under Miscanthus for plant (up to 15.5 kg m–3) compared with gap (up to 2.7 kg m–3) whereas willow had lower densities (up to 3.7 kg m–3). Over two years, SOC increased below 0.2 m depth from 7.1 to 8.5 kg m–3 and was greatest under Sinensis at 0-0.1 m depth (24.8 kg m–3). Miscanthus-derived SOC, based on stable isotope analysis, was greater under plant (11.6 kg m–3) than gap (3.1 kg m–3) for Sinensis. Estimated SOC stock change rates over the two-year period to 1-m depth were 6.4 for Terra Nova, 7.4 for Tora, 3.1 for Giganteus and 8.8 Mg ha–1 year–1 for Sinensis. Rates of change of TN were much less. That SOC matched root mass down the profile, particularly under Miscanthus, indicated that perennial root systems are an important contributor. Willow and Miscanthus offer both biomass production and C sequestration when planted in arable soil

    Overcoming barriers to crossing in willow (Salix spp.) breeding

    Get PDF
    • …
    corecore