4 research outputs found

    Preparation and Using Phantom Lesions to Practice Fine Needle Aspiration Biopsies

    Get PDF
    Currently, health workers including residents and fellows do not have a suitable phantom model to practice the fine- needle aspiration biopsy (FNAB) procedure. In the past, we standardized a model consisting of latex glove containing fresh cattle liver for practicing FNAB. However, this model is difficult to organize and prepare on short notice, with the procurement of fresh cattle liver being the most challenging aspect. Handling of liver with contamination-related problems is also a significant draw back. In addition, the glove material leaks after a few needle passes, with resulting mess. We have established a novel simple method of embedding a small piece of sausage or banana in a commercially available silicone rubber caulk. This model allows the retention of vacuum seal and aspiration of material from the embedded specimen, resembling an actual FNAB procedure on clinical mass lesions. The aspirated material in the needle hub can be processed similar to the specimens procured during an actual FNAB procedure, facilitating additional proficiency in smear preparation and staining. View accompanying video at http://www.jove.com/details.php?id=1404

    Tissue Harvester with Functional Valve (THFV): Shidham's device for reproducibly higher specimen yield by fine needle aspiration biopsy with easy to perform steps

    Get PDF
    BACKGROUND: Fine needle aspiration biopsy (FNAB) cytology has been a highly effective methodology for tissue diagnosis and for various ancillary studies including molecular tests. In addition to other benefits, FNAB predominantly retrieves the diagnostic loosely cohesive cells in the lesion as compared to the adjacent supporting stroma with relatively higher cohesiveness. However, FNAB procedure performed with currently available resources is highly skill dependent with inter-performer variability, which compromises its full potential as a diagnostic tool. In this study we report a device overcoming these limitations. METHODS: 'Tissue Harvester with Functional Valve' (THFV) was evaluated as part of a phase 1 National Institute of Health (NIH) research grant under Small Business Technology Transfer (STTR) Program. Working prototypes of the device were prepared. Each of the four cytopathologists with previous cytopathology fellowship training and experience in performing FNAB evaluated 5 THFV and 5 hypodermic needles resulting in 40 specimens (20 with THFV, 20 with hypodermic needles). A piece of fresh cattle liver stuffed in latex glove was used as the specimen. Based on these results a finished design was finalized. RESULTS: The smears and cell blocks prepared from the specimens obtained by THFV were superior in terms of cellularity to specimens obtained with hypodermic needles. The tissuecrit of specimens obtained with THFV ranged from 70 to 100 μl (mean 87, SD 10), compared to 17 to 30 μl (mean 24, SD 4) with conventional hypodermic needles (p < .0001, Student t-test). The technical ease [on a scale of 1 (easy) to 5 (difficult)] with THFV ranged from 1 to 2 as compared to 2 to 3 with hypodermic needles. CONCLUSION: The specimen yield with the new THFV was significantly higher when compared to hypodermic needles. Also, the FNAB procedure with THFV was relatively easier in comparison with hypodermic needles. The final version of Shidham's THFV device would improve the FNAB specimen yield by eliminating the skill factor. The increased specimen yield by this device would also facilitate wider application of FNAB specimens for various ancillary tests, including molecular tests
    corecore