1,506 research outputs found

    Spin Hall Current and Spin-transfer Torque in Ferromagnetic Metal

    Full text link
    We theoretically examine the spin-transfer torque in the presence of spin-orbit interaction (SOI) at impurities in a ferromagnetic metal on the basis of linear response theory. We obtained, in addition to the usual spin-transfer torque, a new contributioin jSHn\sim {\bm j}_{\rm SH}^{\phantom{\dagger}} \cdot \nabla {\bm n} in the first order in SOI, where jSH{\bm j}_{\rm SH}^{\phantom{\dagger}} is the spin Hall current driven by an external electric field. This is a reaction to inverse spin Hall effect driven by spin motive force in a ferromagnet.Comment: 4 pages, Proceedings of the International Conference on Magnetism, submitted to J. Phys: Conference Serie

    Inverse Spin Hall Effect Driven by Spin Motive Force

    Full text link
    The spin Hall effect is a phenomenon that an electric field induces a spin Hall current. In this Letter, we examine the inverse effect that, in a ferromagnetic conductor, a charge Hall current is induced by a spin motive force, or a spin-dependent effective ` electric' field Es{\bm E}_{\rm s}, arising from the time variation of magnetization texture. By considering skew-scattering and side-jump processes due to spin-orbit interaction at impurities, we obtain the Hall current density as σSHn×Es\sigma_{\rm SH} {\bm n}\times{\bm E}_{\rm s}, where n{\bm n} is the local spin direction and σSH\sigma_{\rm SH} is the spin Hall conductivity. The Hall angle due to the spin motive force is enhanced by a factor of P2P^{2} compared to the conventional anomalous Hall effect due to the ordinary electric field, where PP is the spin polarization of the current. The Hall voltage is estimated for a field-driven domain wall oscillation in a ferromagnetic nanowire.Comment: 4 pages, 3 figures, the title has been change

    Effect of Spin Current on Uniform Ferromagnetism: Domain Nucleation

    Full text link
    Large spin current applied to a uniform ferromagnet leads to a spin-wave instability as pointed out recently. In this paper, it is shown that such spin-wave instability is absent in a state containing a domain wall, which indicates that nucleation of magnetic domains occurs above a certain critical spin current. This scenario is supported also by an explicit energy comparison of the two states under spin current.Comment: 4 pages, 1 figure, REVTeX, rivised version, to appear in Physical Review Letter
    corecore