1,506 research outputs found
Spin Hall Current and Spin-transfer Torque in Ferromagnetic Metal
We theoretically examine the spin-transfer torque in the presence of
spin-orbit interaction (SOI) at impurities in a ferromagnetic metal on the
basis of linear response theory. We obtained, in addition to the usual
spin-transfer torque, a new contributioin in the first order in SOI, where
is the spin Hall current driven by an
external electric field. This is a reaction to inverse spin Hall effect driven
by spin motive force in a ferromagnet.Comment: 4 pages, Proceedings of the International Conference on Magnetism,
submitted to J. Phys: Conference Serie
Inverse Spin Hall Effect Driven by Spin Motive Force
The spin Hall effect is a phenomenon that an electric field induces a spin
Hall current. In this Letter, we examine the inverse effect that, in a
ferromagnetic conductor, a charge Hall current is induced by a spin motive
force, or a spin-dependent effective ` electric' field ,
arising from the time variation of magnetization texture. By considering
skew-scattering and side-jump processes due to spin-orbit interaction at
impurities, we obtain the Hall current density as , where is the local spin direction and
is the spin Hall conductivity. The Hall angle due to the spin
motive force is enhanced by a factor of compared to the conventional
anomalous Hall effect due to the ordinary electric field, where is the spin
polarization of the current. The Hall voltage is estimated for a field-driven
domain wall oscillation in a ferromagnetic nanowire.Comment: 4 pages, 3 figures, the title has been change
Effect of Spin Current on Uniform Ferromagnetism: Domain Nucleation
Large spin current applied to a uniform ferromagnet leads to a spin-wave
instability as pointed out recently.
In this paper, it is shown that such spin-wave instability is absent in a
state containing a domain wall, which indicates that nucleation of magnetic
domains occurs above a certain critical spin current.
This scenario is supported also by an explicit energy comparison of the two
states under spin current.Comment: 4 pages, 1 figure, REVTeX, rivised version, to appear in Physical
Review Letter
- …