12,490 research outputs found

    Thermodynamic properties of the one-dimensional Kondo insulators studied by the density matrix renormalization group method

    Full text link
    Thermodynamic properties of the one-dimensional Kondo lattice model at half-filling are studied by the density matrix renormalization group method applied to the quantum transfer matrix. Spin susceptibility, charge susceptibility, and specific heat are calculated down to T=0.1t for various exchange constants. The obtained results clearly show crossover behavior from the high temperature regime of nearly independent localized spins and conduction electrons to the low temperature regime where the two degrees of freedom couple strongly. The low temperature energy scales of the charge and spin susceptibilities are determined and shown to be equal to the quasiparticle gap and the spin gap, respectively, for weak exchange couplings.Comment: 4 pages, 3 Postscript figures, REVTeX, submitted to J. Phys. Soc. Jp

    Josephson Plasma in RuSr2GdCu2O8

    Full text link
    Josephson plasma in RuSr2_{2}GdCu2_{2}O8_{8}, Ru1x_{1-x}Sr2_{2}GdCu2+x_{2+x}O8_{8} (x = 0.3), and RuSr2_{2}Eu2x_{2-x}Cex_{x}Cu2_{2}O10_{10} (x = 0.5) compounds is investigated by the sphere resonance method. The Josephson plasma is observed in a low-frequency region (around 8.5 cm1^{-1} at T \ll TcT_{c}) for ferromagnetic RuSr2_{2}GdCu2_{2}O8_{8}, while it increases to 35 cm1^{-1} for non-ferromagnetic Ru1x_{1-x}Sr2_{2}GdCu2+x_{2+x}O8_{8} (x = 0.3), which represents a large reduction in the Josephson coupling at ferromagnetic RuO2_{2} block layers. The temperature dependence of the plasma does not shift to zero frequency ({\it i.e.} jcj_{c} = 0) at low temperatures, indicating that there is no transition from the 0-phase to the π\pi-phase in these compounds. The temperature dependence and the oscillator strength of the peak are different from those of other non-magnetic cuprates, and the origins of these anomalies are discussed.Comment: to appear in Phys. Rev.B Rapid Com

    Gravitational waves from axisymmetrically oscillating neutron stars in general relativistic simulations

    Full text link
    Gravitational waves from oscillating neutron stars in axial symmetry are studied performing numerical simulations in full general relativity. Neutron stars are modeled by a polytropic equation of state for simplicity. A gauge-invariant wave extraction method as well as a quadrupole formula are adopted for computation of gravitational waves. It is found that the gauge-invariant variables systematically contain numerical errors generated near the outer boundaries in the present axisymmetric computation. We clarify their origin, and illustrate it possible to eliminate the dominant part of the systematic errors. The best corrected waveforms for oscillating and rotating stars currently contain errors of magnitude 103\sim 10^{-3} in the local wave zone. Comparing the waveforms obtained by the gauge-invariant technique with those by the quadrupole formula, it is shown that the quadrupole formula yields approximate gravitational waveforms besides a systematic underestimation of the amplitude of O(M/R)O(M/R) where MM and RR denote the mass and the radius of neutron stars. However, the wave phase and modulation of the amplitude can be computed accurately. This indicates that the quadrupole formula is a useful tool for studying gravitational waves from rotating stellar core collapse to a neutron star in fully general relativistic simulations. Properties of the gravitational waveforms from the oscillating and rigidly rotating neutron stars are also addressed paying attention to the oscillation associated with fundamental modes

    A relativistic formalism for computation of irrotational binary stars in quasi equilibrium states

    Get PDF
    We present relativistic hydrostatic equations for obtaining irrotational binary neutron stars in quasi equilibrium states in 3+1 formalism. Equations derived here are different from those previously given by Bonazzola, Gourgoulhon, and Marck, and have a simpler and more tractable form for computation in numerical relativity. We also present hydrostatic equations for computation of equilibrium irrotational binary stars in first post-Newtonian order.Comment: 5 pages, corrected eqs.(2.10), (2.11) and (3.1

    Thermodynamics of doped Kondo insulator in one dimension: Finite Temperature DMRG Study

    Full text link
    The finite-temperature density-matrix renormalization-group method is applied to the one-dimensional Kondo lattice model near half filling to study its thermodynamics. The spin and charge susceptibilities and entropy are calculated down to T=0.03t. We find two crossover temperatures near half filling. The higher crossover temperature continuously connects to the spin gap at half filling, and the susceptibilities are suppressed around this temperature. At low temperatures, the susceptibilities increase again with decreasing temperature when doping is finite. We confirm that they finally approach to the values obtained in the Tomonaga-Luttinger (TL) liquid ground state for several parameters. The crossover temperature to the TL liquid is a new energy scale determined by gapless excitations of the TL liquid. The transition from the metallic phase to the insulating phase is accompanied by the vanishing of the lower crossover temperature.Comment: 4 pages, 7 Postscript figures, REVTe

    Three-dimensional MHD Simulations of Jets from Accretion Disks

    Full text link
    We report the results of 3-dimensional magnetohydrodynamic (MHD) simulations of a jet formation by the interaction between an accretion disk and a large scale magnetic field. The disk is not treated as a boundary condition but is solved self-consistently. To investigate the stability of MHD jet, the accretion disk is perturbed with a non-axisymmetric sinusoidal or random fluctuation of the rotational velocity. The dependences of the jet velocity (vz)(v_z), mass outflow rate (M˙w)(\dot{M}_w), and mass accretion rate (M˙a)(\dot{M}_a) on the initial magnetic field strength in both non-axisymmetric cases are similar to those in the axisymmetric case. That is, vzB01/3v_z \propto B_0^{1/3}, M˙wB0\dot{M}_w \propto B_0 and M˙aB01.4\dot{M}_a \propto B_0^{1.4} where B0B_0 is the initial magnetic field strength. The former two relations are consistent with the Michel's steady solution, vz(B02/M˙w)1/3v_z \propto (B_0^2/\dot{M}_w)^{1/3}, although the jet and accretion do not reach the steady state. In both perturbation cases, a non-axisymmetric structure with m=2m=2 appears in the jet, where mm means the azimuthal wave number. This structure can not be explained by Kelvin-Helmholtz instability and seems to originate in the accretion disk. Non-axisymmetric modes in the jet reach almost constant levels after about 1.5 orbital periods of the accretion disk, while all modes in the accretion disk grow with oscillation. As for the angular momentum transport by Maxwell stress, the vertical component, ,iscomparabletotheradialcomponent,, is comparable to the radial component, , in the wide range of initial magnetic field strength.Comment: Accepted for publication in ApJ. The pdf file with high resolution figures can be downloaded at http://www.kusastro.kyoto-u.ac.jp/~hiromitu/3j050806.pd

    Lorentz Covariance and the Dimensional Crossover of 2d-Antiferromagnets

    Full text link
    We derive a lattice β\beta-function for the 2d-Antiferromagnetic Heisenberg model, which allows the lattice interaction couplings of the nonperturbative Quantum Monte Carlo vacuum to be related directly to the zero-temperature fixed points of the nonlinear sigma model in the presence of strong interplanar and spin anisotropies. In addition to the usual renormalization of the gapful disordered state in the vicinity of the quantum critical point, we show that this leads to a chiral doubling of the spectra of excited states

    Dynamic correlations in doped 1D Kondo insulator: Finite-T DMRG study

    Full text link
    The finite-T DMRG method is applied to the one-dimensional Kondo lattice model to calculate dynamic correlation functions. Dynamic spin and charge correlations, S_f(omega), S_c(omega), and N_c(omega), and quasiparticle density of states rho(omega) are calculated in the paramagnetic metallic phase for various temperatures and hole densities. Near half filling, it is shown that a pseudogap grows in these dynamic correlation functions below the crossover temperature characterized by the spin gap at half filling. A sharp peak at omega=0 evolves at low temperatures in S_f(omega) and N_c(omega). This may be an evidence of the formation of the collective excitations, and this confirms that the metallic phase is a Tomonaga-Luttinger liquid in the low temperature limit.Comment: 5 pages, 6 Postscript figures, REVTe

    On the Maximum Mass of Differentially Rotating Neutron Stars

    Get PDF
    We construct relativistic equilibrium models of differentially rotating neutron stars and show that they can support significantly more mass than their nonrotating or uniformly rotating counterparts. We dynamically evolve such ``hypermassive'' models in full general relativity and show that there do exist configurations which are dynamically stable against radial collapse and bar formation. Our results suggest that the remnant of binary neutron star coalescence may be temporarily stabilized by differential rotation, leading to delayed collapse and a delayed gravitational wave burst.Comment: 4 pages, 2 figures, uses emulateapj.sty; to appear in ApJ Letter
    corecore