15,879 research outputs found
Non-Abelian Dual Superconductor Picture for Quark Confinement
We give a theoretical framework for defining and extracting non-Abelian
magnetic monopoles in a gauge-invariant way in SU(N) Yang-Mills theory to study
quark confinement. Then we give numerical evidences that the non-Abelian
magnetic monopole defined in this way gives a dominant contribution to
confinement of fundamental quarks in SU(3) Yang-Mills theory, which is in sharp
contrast to the SU(2) case in which Abelian magnetic monopoles play the
dominant role for quark confinement.Comment: 9 pages, 3 figures (4 ps files); The paper was extensively revised,
focusing especially on the lattice par
Gravitational waves from axisymmetrically oscillating neutron stars in general relativistic simulations
Gravitational waves from oscillating neutron stars in axial symmetry are
studied performing numerical simulations in full general relativity. Neutron
stars are modeled by a polytropic equation of state for simplicity. A
gauge-invariant wave extraction method as well as a quadrupole formula are
adopted for computation of gravitational waves. It is found that the
gauge-invariant variables systematically contain numerical errors generated
near the outer boundaries in the present axisymmetric computation. We clarify
their origin, and illustrate it possible to eliminate the dominant part of the
systematic errors. The best corrected waveforms for oscillating and rotating
stars currently contain errors of magnitude in the local wave
zone. Comparing the waveforms obtained by the gauge-invariant technique with
those by the quadrupole formula, it is shown that the quadrupole formula yields
approximate gravitational waveforms besides a systematic underestimation of the
amplitude of where and denote the mass and the radius of
neutron stars. However, the wave phase and modulation of the amplitude can be
computed accurately. This indicates that the quadrupole formula is a useful
tool for studying gravitational waves from rotating stellar core collapse to a
neutron star in fully general relativistic simulations. Properties of the
gravitational waveforms from the oscillating and rigidly rotating neutron stars
are also addressed paying attention to the oscillation associated with
fundamental modes
Inverse Spin Hall Effect Driven by Spin Motive Force
The spin Hall effect is a phenomenon that an electric field induces a spin
Hall current. In this Letter, we examine the inverse effect that, in a
ferromagnetic conductor, a charge Hall current is induced by a spin motive
force, or a spin-dependent effective ` electric' field ,
arising from the time variation of magnetization texture. By considering
skew-scattering and side-jump processes due to spin-orbit interaction at
impurities, we obtain the Hall current density as , where is the local spin direction and
is the spin Hall conductivity. The Hall angle due to the spin
motive force is enhanced by a factor of compared to the conventional
anomalous Hall effect due to the ordinary electric field, where is the spin
polarization of the current. The Hall voltage is estimated for a field-driven
domain wall oscillation in a ferromagnetic nanowire.Comment: 4 pages, 3 figures, the title has been change
Thermodynamic properties of the one-dimensional Kondo insulators studied by the density matrix renormalization group method
Thermodynamic properties of the one-dimensional Kondo lattice model at
half-filling are studied by the density matrix renormalization group method
applied to the quantum transfer matrix. Spin susceptibility, charge
susceptibility, and specific heat are calculated down to T=0.1t for various
exchange constants. The obtained results clearly show crossover behavior from
the high temperature regime of nearly independent localized spins and
conduction electrons to the low temperature regime where the two degrees of
freedom couple strongly. The low temperature energy scales of the charge and
spin susceptibilities are determined and shown to be equal to the quasiparticle
gap and the spin gap, respectively, for weak exchange couplings.Comment: 4 pages, 3 Postscript figures, REVTeX, submitted to J. Phys. Soc. Jp
A relativistic formalism for computation of irrotational binary stars in quasi equilibrium states
We present relativistic hydrostatic equations for obtaining irrotational
binary neutron stars in quasi equilibrium states in 3+1 formalism. Equations
derived here are different from those previously given by Bonazzola,
Gourgoulhon, and Marck, and have a simpler and more tractable form for
computation in numerical relativity. We also present hydrostatic equations for
computation of equilibrium irrotational binary stars in first post-Newtonian
order.Comment: 5 pages, corrected eqs.(2.10), (2.11) and (3.1
Merger of black hole-neutron star binaries: nonspinning black hole case
We perform a simulation for merger of a black hole (BH)-neutron star (NS)
binary in full general relativity preparing a quasicircular state as initial
condition. The BH is modeled by a moving puncture with no spin and the NS by
the -law equation of state with . Corotating velocity field
is assumed for the NS. The mass of the BH and the rest-mass of the NS are
chosen to be and with
relatively large radius of the NS km. The NS is tidally disrupted
near the innermost stable orbit but of the material is swallowed
into the BH with small disk mass even for such small BH
mass . The result indicates that the system of a BH and a
massive disk of is not formed from nonspinning BH-NS binaries,
although a disk of mass is a possible outcome.Comment: 5 pages. Phys. Rev. D 74, 121503 (R) (2006
Axisymmetric general relativistic hydrodynamics: Long-term evolution of neutron stars and stellar collapse to neutron stars and black holes
We report a new implementation for axisymmetric simulation in full general
relativity. In this implementation, the Einstein equations are solved using the
Nakamura-Shibata formulation with the so-called cartoon method to impose an
axisymmetric boundary condition, and the general relativistic hydrodynamic
equations are solved using a high-resolution shock-capturing scheme based on an
approximate Riemann solver. As tests, we performed the following simulations:
(i) long-term evolution of non-rotating and rapidly rotating neutron stars,
(ii) long-term evolution of neutron stars of a high-amplitude damping
oscillation accompanied with shock formation, (iii) collapse of unstable
neutron stars to black holes, and (iv) stellar collapses to neutron stars. The
tests (i)--(iii) were carried out with the -law equation of state, and
the test (iv) with a more realistic parametric equation of state for
high-density matter. We found that this new implementation works very well: It
is possible to perform the simulations for stable neutron stars for more than
10 dynamical time scales, to capture strong shocks formed at stellar core
collapses, and to accurately compute the mass of black holes formed after the
collapse and subsequent accretion. In conclusion, this implementation is robust
enough to apply to astrophysical problems such as stellar core collapse of
massive stars to a neutron star and black hole, phase transition of a neutron
star to a high-density star, and accretion-induced collapse of a neutron star
to a black hole. The result for the first simulation of stellar core collapse
to a neutron star started from a realistic initial condition is also presented.Comment: 28 pages, to appear in PRD 67, 0440XX (2003
Magnetic reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas
A numerical study of magnetic reconnection in the large-Lundquist-number
(), plasmoid-dominated regime is carried out for up to . The
theoretical model of Uzdensky {\it et al.} [Phys. Rev. Lett. {\bf 105}, 235002
(2010)] is confirmed and partially amended. The normalized reconnection rate is
\normEeff\sim 0.02 independently of for . The plasmoid flux
() and half-width () distribution functions scale as and . The joint distribution of and
shows that plasmoids populate a triangular region ,
where is the reconnecting field. It is argued that this feature is due to
plasmoid coalescence. Macroscopic "monster" plasmoids with % of the
system size are shown to emerge in just a few Alfv\'en times, independently of
, suggesting that large disruptive events are an inevitable feature of
large- reconnection.Comment: 5 pages, 6 figures, submitted for publicatio
Top Quark Physics at the LHC
A digest of the prospects of top quark physics at the LHC is presented. The ATLAS and the CMS detectors are about to produce a large amount of data with high top quark contents from the LHC proton-proton collisions. A wide variety of physics analyses is planned in both experiments, and a number of useful insights have already been obtained regarding their detector performance and physics potential. The results were collected mainly from the CSC analysis in the ATLAS experiment (2008) and the TDR from CMS (2007) with updates where available. This summary is based on the talk presented at the Hadron Collider Physics Symposium 2008, Galena, Illinois, May 27-31, 2008
- …