59 research outputs found

    Magnetized Iron Atmospheres for Neutron Stars

    Full text link
    Using a Hartree-Fock formalism, we estimate energy levels and photon cross sections for atomic iron in magnetic fields B ~ 10^13 G. Computing ionization equilibrium and normal mode opacities with these data, we construct LTE neutron star model atmospheres at 5.5 < Log(T_eff) < 6.5 and compute emergent spectra. We examine the dependence of the emergent spectra on T_eff and B. We also show the spectral variation with the angle between the magnetic field and the atmosphere normal and describe the significant limb darkening in the X-ray band. These results are compared with recent detailed computations of neutron star H model atmospheres in high fields and with low field Fe and H model atmospheres constructed from detailed opacities. The large spectral differences for different surface compositions may be discernible with present X-ray data; we also note improvements needed to allow comparison of Fe models with high quality spectra.Comment: 18 pages with 5 eps figures, accepted for publication in ApJ Replaced due to clerical error only: one more author, no new conten

    Powering Anomalous X-ray Pulsars by Neutron Star Cooling

    Get PDF
    Using recently calculated analytic models for the thermal structure of ultramagnetized neutron stars, we estimate the thermal fluxes from young (t∌1000t\sim 1000 yr) ultramagnetized (B∌1015B \sim 10^{15} G) cooling neutron stars. We find that the pulsed X-ray emission from objects such as 1E 1841-045 and 1E 2259+586 as well as many soft-gamma repeaters can be explained by photon cooling if the neutron star possesses a thin insulating envelope of matter of low atomic weight at densities ρ<107−108\rho < 10^{7}-10^{8} g/cm3^3. The total mass of this insulating layer is M∌10−11−10−8M⊙M \sim 10^{-11}-10^{-8} M_\odot.Comment: 8 pages, 1 figure, to appear in Ap.J. Letters (one reference entry corrected, no other changes

    Equation of state and opacities for hydrogen atmospheres of magnetars

    Full text link
    The equation of state and radiative opacities of partially ionized, strongly magnetized hydrogen plasmas, presented in a previous paper [ApJ 585, 955 (2003), astro-ph/0212062] for the magnetic field strengths 8.e11 G < B < 3.e13 G, are extended to the field strengths 3.e13 G < B < 1.e15 G, relevant for magnetars. The first- and second-order thermodynamic functions and radiative opacities are calculated and tabulated for 5.e5 < T < 4.e7 K in a wide range of densities. We show that bound-free transitions give an important contribution to the opacities in the considered range of B in the outer neutron-star atmosphere layers. Unlike the case of weaker fields, bound-bound transitions are unimportant.Comment: 7 pages, 6 figures, LaTeX using emulateapj.cls (included). Accepted by Ap

    X-ray observations of the high magnetic field radio pulsar PSR J1814-1744

    Get PDF
    PSR J1814-1744 is a 4 s radio pulsar with surface dipole magnetic field strength 5.5*10^13 G, inferred assuming simple magnetic dipole braking. This pulsar's spin parameters are very similar to those of anomalous X-ray pulsars (AXPs), suggesting that this may be a transition object between the radio pulsar and AXP population, if AXPs are isolated, high magnetic field neutron stars as has recently been hypothesized. We present archival X-ray observations of PSR J1814-1744 made with ROSAT and ASCA. X-ray emission is not detected from the position of the radio pulsar. The derived upper flux limit implies an X-ray luminosity significantly smaller than those of all known AXPs. This conclusion is insensitive to the possibility that X-ray emission from PSR J1814-1744 is beamed or that it undergoes modest variability. When interpreted in the context of the magnetar mechanism, these results argue that X-ray emission from AXPs must depend on more than merely the inferred surface magnetic field strength. This suggests distinct evolutionary paths for radio pulsars and AXP, despite their proximity in period--period derivative phase space.Comment: 11 pages, including 2 embedded figures. Accepted by Ap

    The Compact Central Object in the Supernova Remnant G266.2-1.2

    Get PDF
    We observed the compact central object CXOU J085201.4--461753 in the supernova remnant G266.2--1.2 (RX J0852.0--4622) with the Chandra ACIS detector in timing mode. The spectrum of this object can be described by a blackbody model with the temperature kT=404 eV and radius of the emitting region R=0.28 km, at a distance of 1 kpc. Power-law and thermal plasma models do not fit the source spectrum. The spectrum shows a marginally significant feature at 1.68 keV. Search for periodicity yields two candidate periods, about 301 ms and 33 ms, both significant at a 2.1 sigma level; the corresponding pulsed fractions are 13% and 9%, respectively. We find no evidence for long-term variability of the source flux, nor do we find extended emission around the central object. We suggest that CXOU J085201.4--461753 is similar to CXOU J232327.9+584842, the central source of the supernova remnant Cas A. It could be either a neutron star with a low or regular magnetic field, slowly accreting from a fossil disk, or, more likely, an isolated neutron star with a superstrong magnetic field. In either case, a conservative upper limit on surface temperature of a 10 km radius neutron star is about 90 eV, which suggests accelerated cooling for a reasonable age of a few thousand years.Comment: Accepted to ApJ, 13 pages, 1 figur

    Radiation of Neutron Stars Produced by Superfluid Core

    Get PDF
    We find that neutron star interior is transparent for collisionless electron sound, the same way as it is transparent for neutrinos. In the presence of magnetic field the electron sound is coupled with electromagnetic radiation and form the fast magnetosonic wave. We find that electron sound is generated by superfluid vortices in the stellar core. Thermally excited helical vortex waves produce fast magnetosonic waves in the stellar crust which propagate toward the surface and transform into outgoing electromagnetic radiation. The vortex radiation has the spectral index -0.45 and can explain nonthermal radiation of middle-aged pulsars observed in the infrared, optical and hard X-ray bands. The radiation is produced in the stellar interior which allows direct determination of the core temperature. Comparing the theory with available spectra observations we find that the core temperature of the Vela pulsar is T=8*10^8K, while the core temperature of PSR B0656+14 and Geminga exceeds 2*10^8K. This is the first measurement of the temperature of a neutron star core. The temperature estimate rules out equation of states incorporating Bose condensations of pions or kaons and quark matter in these objects. Based on the temperature estimate and cooling models we determine the critical temperature of triplet neutron superfluidity in the Vela core Tc=(7.5\pm 1.5)*10^9K which agrees well with recent data on behavior of nucleon interactions at high energies. Another finding is that in the middle aged neutron stars the vortex radiation, rather then thermal conductivity, is the main mechanism of heat transfer from the stellar core to the surface. Electron sound opens a perspective of direct spectroscopic study of superdense matter in the neutron star interiors.Comment: 43 pages, 7 figures, to appear in Astrophysical Journa

    Hydrogen atom moving across a strong magnetic field: analytical approximations

    Full text link
    Analytical approximations are constructed for binding energies, quantum-mechanical sizes and oscillator strengths of main radiative transitions of hydrogen atoms arbitrarily moving in magnetic fields 10^{12}-10^{13} G. Examples of using the obtained approximations for determination of maximum transverse velocity of an atom and for evaluation of absorption spectra in magnetic neutron star atmospheres are presented.Comment: 17 pages, 3 figures, 5 tables, LaTeX with IOP style files (included). In v.2, Fig.1 and Table 5 have been corrected. In v.3, a misprint in the fit for oscillator strengths, Eq.(21), has been correcte

    Surface Emission Properties of Strongly Magnetic Neutron Stars

    Get PDF
    We construct radiative equilibrium models for strongly magnetized (B > 10^13 G) neutron-star atmospheres taking into account magnetic free-free absorption and scattering processes computed for two polarization modes. We include the effects of vacuum polarization in our calculations. We present temperature profiles and the angle-, photon energy-, and polarization-dependent emerging intensity for a range of magnetic field strengths and effective temperatures of the atmospheres. We find that for B < 10^14 G, the emerging spectra are bluer than the blackbody corresponding to the effective temperature, T_eff, with modified Planckian shapes due to the photon-energy dependence of the magnetic opacities. However, vacuum polarization significantly modifies the spectra for B~10^15 G, giving rise to power-law tails at high photon energies. The angle-dependence (beaming) of the emerging intensity has two maxima: a narrow (pencil) peak at small angles (<5 degrees) with respect to the normal and a broad maximum (fan beam) at intermediate angles (~20-60 degrees). The relative importance and the opening angle of the radial beam decreases strongly with increasing magnetic field strength and decreasing photon energy. We finally compute a T_eff-T_c relation for our models, where T_c is the local color temperature of the spectrum emerging from the neutron star surface, and find that T_c/T_eff ranges between 1.1-1.8. We discuss the implications of our results for various thermally emitting neutron star models.Comment: 30 pages, 10 color figures, ApJ in pres
    • 

    corecore