13,987 research outputs found

    X(1576) and the Final State Interaction Effect

    Get PDF
    We study whether the broad peak X(1576) observed by BES Collaboration arises from the final state interaction effect of ρ(1450,1700)\rho(1450,1700) decays. The interference effect could produce an enhancement around 1540 MeV in the K+KK^+K^- spectrum with typical interference phases. However, the branching ratio B[J/ψπ0ρ(1450,1700)]B[ρ(1450,1700)K+K]B[J/\psi\to \pi^{0}\rho(1450,1700)]\cdot B[\rho(1450,1700)\to K^{+}K^{-}] from the final state interaction effect is far less than the experimental data.Comment: 6 pages, 4 figures. Some typos corrected, more discussion and references adde

    Image Deblurring and Super-resolution by Adaptive Sparse Domain Selection and Adaptive Regularization

    Full text link
    As a powerful statistical image modeling technique, sparse representation has been successfully used in various image restoration applications. The success of sparse representation owes to the development of l1-norm optimization techniques, and the fact that natural images are intrinsically sparse in some domain. The image restoration quality largely depends on whether the employed sparse domain can represent well the underlying image. Considering that the contents can vary significantly across different images or different patches in a single image, we propose to learn various sets of bases from a pre-collected dataset of example image patches, and then for a given patch to be processed, one set of bases are adaptively selected to characterize the local sparse domain. We further introduce two adaptive regularization terms into the sparse representation framework. First, a set of autoregressive (AR) models are learned from the dataset of example image patches. The best fitted AR models to a given patch are adaptively selected to regularize the image local structures. Second, the image non-local self-similarity is introduced as another regularization term. In addition, the sparsity regularization parameter is adaptively estimated for better image restoration performance. Extensive experiments on image deblurring and super-resolution validate that by using adaptive sparse domain selection and adaptive regularization, the proposed method achieves much better results than many state-of-the-art algorithms in terms of both PSNR and visual perception.Comment: 35 pages. This paper is under review in IEEE TI

    Protein complex detection with semi-supervised learning in protein interaction networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interactions (PPIs) play fundamental roles in nearly all biological processes. The systematic analysis of PPI networks can enable a great understanding of cellular organization, processes and function. In this paper, we investigate the problem of protein complex detection from noisy protein interaction data, i.e., finding the subsets of proteins that are closely coupled via protein interactions. However, protein complexes are likely to overlap and the interaction data are very noisy. It is a great challenge to effectively analyze the massive data for biologically meaningful protein complex detection.</p> <p>Results</p> <p>Many people try to solve the problem by using the traditional unsupervised graph clustering methods. Here, we stand from a different point of view, redefining the properties and features for protein complexes and designing a “semi-supervised” method to analyze the problem. In this paper, we utilize the neural network with the “semi-supervised” mechanism to detect the protein complexes. By retraining the neural network model recursively, we could find the optimized parameters for the model, in such a way we can successfully detect the protein complexes. The comparison results show that our algorithm could identify protein complexes that are missed by other methods. We also have shown that our method achieve better precision and recall rates for the identified protein complexes than other existing methods. In addition, the framework we proposed is easy to be extended in the future.</p> <p>Conclusions</p> <p>Using a weighted network to represent the protein interaction network is more appropriate than using a traditional unweighted network. In addition, integrating biological features and topological features to represent protein complexes is more meaningful than using dense subgraphs. Last, the “semi-supervised” learning model is a promising model to detect protein complexes with more biological and topological features available.</p
    corecore