6,108 research outputs found

    Genomic Analyses of the Quinol Oxidases and/or Quinone Reductases Involved in Bacterial Extracellular Electron Transfer

    Get PDF
    To exchange electrons with extracellular substrates, some microorganisms employ extracellular electron transfer (EET) pathways that physically connect extracellular redox reactions to intracellular metabolic activity. These pathways are made of redox and structural proteins that work cooperatively to transfer electrons between extracellular substrates and the cytoplasmic membrane. Crucial to the bacterial and archaeal EET pathways are the quinol oxidases and/or quinone reductases in the cytoplasmic membrane where they recycle the quinone/quinol pool in the cytoplasmic membrane during EET reaction. Up to date, three different families of quinol oxidases and/or quinone reductases involved in bacterial EET have been discovered. They are the CymA, CbcL/MtrH/MtoC, and ImcH families of quinol oxidases and/or quinone reductases that are all multiheme c-type cytochromes (c-Cyts). To investigate to what extent they are distributed among microorganisms, we search the bacterial as well as archaeal genomes for the homologs of these c-Cyts. Search results reveal that the homologs of these c-Cyts are only found in the Domain Bacteria. Moreover, the CymA homologs are only found in the phylum of Proteobacteria and most of them are in the Shewanella genus. In addition to Shewanella sp., CymA homologs are also found in other Fe(III)-reducing bacteria, such as of Vibrio parahaemolyticus. In contrast to CymA, CbcL/MtrH/MtoC, and ImcH homologs are much more widespread. CbcL/MtrH/MtoC homologs are found in 15 phyla, while ImcH homologs are found in 12 phyla. Furthermore, the heme-binding motifs of CbcL/MtrH/MtoC and ImcH homologs vary greatly, ranging from 3 to 23 and 6 to 10 heme-binding motifs for CbcL/MtrH/MtoC and ImcH homologs, respectively. Moreover, CymA and CbcL/MtrH/MtoC homologs are found in both Fe(III)-reducing and Fe(II)-oxidizing bacteria, suggesting that these families of c-Cyts catalyze both quinol-oxidizing and quinone-reducing reactions. ImcH homologs are only found in the Fe(III)-reducing bacteria, implying that they are only the quinol oxidases. Finally, some bacteria have the homologs of two different families of c-Cyts, which may improve the bacterial capability to exchange electrons with extracellular substrates

    Anderson Localization and Mobility Edge in Curved Spacetime

    Full text link
    We construct a quasiperiodic lattice model in a curved spacetime to explore the crossover concerning both condensed matter and curved spacetime physics. We study the related Anderson localization and find that the model has a clear boundary of localized-extended phase separation, which leads to the mobility edge, i.e., the coexistence of nonergodic localized, critical and extended phases. A novel self-consistent segmentation method is developed to calculate the analytical expression of the critical position of phase separation, and the rich phase diagram is determined by calculating the fractal dimension and scaling index in multifractal analysis.Comment: 17 pages, 4+12 figure

    Explicit Visual Prompts for Visual Object Tracking

    Full text link
    How to effectively exploit spatio-temporal information is crucial to capture target appearance changes in visual tracking. However, most deep learning-based trackers mainly focus on designing a complicated appearance model or template updating strategy, while lacking the exploitation of context between consecutive frames and thus entailing the \textit{when-and-how-to-update} dilemma. To address these issues, we propose a novel explicit visual prompts framework for visual tracking, dubbed \textbf{EVPTrack}. Specifically, we utilize spatio-temporal tokens to propagate information between consecutive frames without focusing on updating templates. As a result, we cannot only alleviate the challenge of \textit{when-to-update}, but also avoid the hyper-parameters associated with updating strategies. Then, we utilize the spatio-temporal tokens to generate explicit visual prompts that facilitate inference in the current frame. The prompts are fed into a transformer encoder together with the image tokens without additional processing. Consequently, the efficiency of our model is improved by avoiding \textit{how-to-update}. In addition, we consider multi-scale information as explicit visual prompts, providing multiscale template features to enhance the EVPTrack's ability to handle target scale changes. Extensive experimental results on six benchmarks (i.e., LaSOT, LaSOT\rm ext_{ext}, GOT-10k, UAV123, TrackingNet, and TNL2K.) validate that our EVPTrack can achieve competitive performance at a real-time speed by effectively exploiting both spatio-temporal and multi-scale information. Code and models are available at https://github.com/GXNU-ZhongLab/EVPTrack

    4-(1-Cyclo­propyl-6-fluoro-4-oxo-1,4-dihydro­quinolin-7-yl)piperazin-1-ium 2,4,5-tricarb­oxy­benzene-1-carboxyl­ate monohydrate

    Get PDF
    In the crystal of title compound, C16H19FN3O+·C10H5O8 −·H2O, the water mol­ecule and the ions are connected by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds and π–π stacking [centroid–centroid separation = 3.602 (1) Å] between the benzene ring and the pyridine ring, generating a three-dimensional supra­molecular structure
    • …
    corecore