5,550 research outputs found

    Entanglement-guided architectures of machine learning by quantum tensor network

    Full text link
    It is a fundamental, but still elusive question whether the schemes based on quantum mechanics, in particular on quantum entanglement, can be used for classical information processing and machine learning. Even partial answer to this question would bring important insights to both fields of machine learning and quantum mechanics. In this work, we implement simple numerical experiments, related to pattern/images classification, in which we represent the classifiers by many-qubit quantum states written in the matrix product states (MPS). Classical machine learning algorithm is applied to these quantum states to learn the classical data. We explicitly show how quantum entanglement (i.e., single-site and bipartite entanglement) can emerge in such represented images. Entanglement characterizes here the importance of data, and such information are practically used to guide the architecture of MPS, and improve the efficiency. The number of needed qubits can be reduced to less than 1/10 of the original number, which is within the access of the state-of-the-art quantum computers. We expect such numerical experiments could open new paths in charactering classical machine learning algorithms, and at the same time shed lights on the generic quantum simulations/computations of machine learning tasks.Comment: 10 pages, 5 figure

    Phase diagram and exotic spin-spin correlations of anisotropic Ising model on the Sierpi\'nski gasket

    Full text link
    The anisotropic antiferromagnetic Ising model on the fractal Sierpi\'{n}ski gasket is intensively studied, and a number of exotic properties are disclosed. The ground state phase diagram in the plane of magnetic field-interaction of the system is obtained. The thermodynamic properties of the three plateau phases are probed by exploring the temperature-dependence of magnetization, specific heat, susceptibility and spin-spin correlations. No phase transitions are observed in this model. In the absence of a magnetic field, the unusual temperature dependence of the spin correlation length is obtained with 0≤0 \leqJb/_b/Ja<1_a<1, and an interesting crossover behavior between different phases at Jb/_b/Ja=1_a=1 is unveiled, whose dynamics can be described by the Jb/_b/Ja_a-dependence of the specific heat, susceptibility and spin correlation functions. The exotic spin-spin correlation patterns that share the same special rotational symmetry as that of the Sierpi\'{n}ski gasket are obtained in both the 1/31/3 plateau disordered phase and the 5/95/9 plateau partially ordered ferrimagnetic phase. Moreover, a quantum scheme is formulated to study the thermodynamics of the fractal Sierpi\'{n}ski gasket with Heisenberg interactions. We find that the unusual temperature dependence of the correlation length remains intact in a small quantum fluctuation.Comment: 9 pages, 12 figure

    Kosterlitz-Thouless phase transition and reentrance in an anisotropic 3-state Potts model on the generalized Kagome lattice

    Full text link
    The unusual reentrant phenomenon is observed in the anisotropic 3-state Potts model on a gen- eralized Kagome lattice. By employing the linearized tensor renormalization group method, we find that the reentrance can appear in the region not only under a partial ordered phase as commonly known but also a phase without a local order parameter, which is uncovered to fall into the uni- versality of the Kosterlitz-Thouless (KT) type. The region of the reentrance depends strongly on the ratios of the next nearest couplings {\alpha} = J2 /|J1 | and {\beta} = J3 /|J1 |. The phase diagrams in the plane of temperature versus {\beta} for different {\alpha} are obtained. Through massive calculations, it is also revealed that the quasi-entanglement entropy can be used to accurately detect the KT transition temperature
    • …
    corecore