3,954 research outputs found

    Approaching quantum anomalous Hall effect in proximity-coupled YIG/graphene/h-BN sandwich structure

    Full text link
    Quantum anomalous Hall state is expected to emerge in Dirac electron systems such as graphene under both sufficiently strong exchange and spin-orbit interactions. In pristine graphene, neither interaction exists; however, both interactions can be acquired by coupling graphene to a magnetic insulator (MI) as revealed by the anomalous Hall effect. Here, we show enhanced magnetic proximity coupling by sandwiching graphene between a ferrimagnetic insulator yttrium iron garnet (YIG) and hexagonal-boron nitride (h-BN) which also serves as a top gate dielectric. By sweeping the top-gate voltage, we observe Fermi level-dependent anomalous Hall conductance. As the Dirac point is approached from both electron and hole sides, the anomalous Hall conductance reaches 1/4 of the quantum anomalous Hall conductance 2e2/h. The exchange coupling strength is determined to be as high as 27 meV from the transition temperature of the induced magnetic phase. YIG/graphene/h-BN is an excellent heterostructure for demonstrating proximity-induced interactions in two-dimensional electron systems

    Anterolateral thigh perforator flap made by customized 3D-printing fabrication of fixed positioning guide for oromaxillofacial reconstruction:a preliminary study

    Get PDF
    Oromaxillofacial carcinomas frequently result in serious tissue defect due to enlarged resection for treating their extensive invasion, which require challenging reconstruction. Three-dimensional (3D) printing is an advanced technology which has greatly promoted the progress of craniomaxillofacial reconstructive surgery. This present study aimed to investigate the advantages of anterolateral thigh (ALT) perforator flap manufactured by 3D printing fixed positioning guide template in curing oromaxillofacial defect. Twenty patients with oromaxillofacial defects resulted from severe primary malignant tumors were divided into experimental group assisted by digital technique (n=8) and controlled group conventionally aided by ultrasound (n=12). The therapeutic effectiveness, flap preparation time, amount of bleeding, deviation of perforator vessel location, aesthetic satisfaction of donor site, postoperative complications, adverse symptom of flap, and LEFS scores were compared. For experimental group, flap preparation time was significantly shorter; and it has obviously less bleeding, minor deviation of perforator vessel location, and better aesthetic satisfaction of donor site (P.05). The study suggests 3D printing template of fixed positioning guide provides a brand-new method for orienting perforated vessels of ALT flap, which is more accurate in clinical application. It can improve the operative efficacy, and increase the successful rate of operation as well

    Modelling the thickness of landfast sea ice in Prydz Bay, East Antarctica

    Get PDF
    Landfast sea ice forms and remains fixed along the coast for most of its life time. In Prydz Bay, landfast ice is seasonal due to melting, mechanical breakage and drift of ice in summer. Its annual cycle of thickness and temperature was examined using a one-dimensional thermodynamic model. Model calibration was made for March 2006 to March 2007 with forcing based on the Chinese National Antarctic Research Expedition data, which consisted of in situ ice and snow observations and meteorological records at the Zhongshan Station. The observed maximum annual ice thickness was 1.74 m. The ice broke and drifted out in summer when its thickness was 0.5-1.0 m. Oceanic heat flux was estimated by tuning the model with observed ice thickness. In the growth season, it decreased from 25 Wm(-2) to 5W m(-2), and in summer it recovered back to 25 W m(-2). Albedo was important in summer; by model tuning the estimated value was 0.6, consistent with the ice surface being bare all summer. Snow cover was thin, having a minor role. The results can be used to further our understanding of the importance of landfast ice in Antarctica for climate research and high-resolution ice-ocean modelling.Peer reviewe

    Search What You Want: Barrier Panelty NAS for Mixed Precision Quantization

    Full text link
    Emergent hardwares can support mixed precision CNN models inference that assign different bitwidths for different layers. Learning to find an optimal mixed precision model that can preserve accuracy and satisfy the specific constraints on model size and computation is extremely challenge due to the difficult in training a mixed precision model and the huge space of all possible bit quantizations. In this paper, we propose a novel soft Barrier Penalty based NAS (BP-NAS) for mixed precision quantization, which ensures all the searched models are inside the valid domain defined by the complexity constraint, thus could return an optimal model under the given constraint by conducting search only one time. The proposed soft Barrier Penalty is differentiable and can impose very large losses to those models outside the valid domain while almost no punishment for models inside the valid domain, thus constraining the search only in the feasible domain. In addition, a differentiable Prob-1 regularizer is proposed to ensure learning with NAS is reasonable. A distribution reshaping training strategy is also used to make training more stable. BP-NAS sets new state of the arts on both classification (Cifar-10, ImageNet) and detection (COCO), surpassing all the efficient mixed precision methods designed manually and automatically. Particularly, BP-NAS achieves higher mAP (up to 2.7\% mAP improvement) together with lower bit computation cost compared with the existing best mixed precision model on COCO detection.Comment: ECCV202

    Monoclinic form of (Z)-1-ferrocenyl-3-(3-hy­droxy­anilino)but-2-en-1-one

    Get PDF
    The title compound, [Fe(C5H5)(C15H14NO2)], is a monoclinic polymorph of the previously reported triclinic form [Shi et al. (2006 ▶). Acta Cryst. C62, m407–m410]. The polymorphs feature the same strong intra­molecular N—H⋯O=C hydrogen bonds, but show different packing modes. The mol­ecules in the monoclinic form associate into double chains via O—H⋯O=C and (Cp)C—H⋯O—H inter­actions

    Diagnostic value of two dimensional shear wave elastography combined with texture analysis in early liver fibrosis.

    Get PDF
    BACKGROUND: Staging diagnosis of liver fibrosis is a prerequisite for timely diagnosis and therapy in patients with chronic hepatitis B. In recent years, ultrasound elastography has become an important method for clinical noninvasive assessment of liver fibrosis stage, but its diagnostic value for early liver fibrosis still needs to be further improved. In this study, the texture analysis was carried out on the basis of two dimensional shear wave elastography (2D-SWE), and the feasibility of 2D-SWE plus texture analysis in the diagnosis of early liver fibrosis was discussed. AIM: To assess the diagnostic value of 2D-SWE combined with textural analysis in liver fibrosis staging. METHODS: This study recruited 46 patients with chronic hepatitis B. Patients underwent 2D-SWE and texture analysis; Young\u27s modulus values and textural patterns were obtained, respectively. Textural pattern was analyzed with regard to contrast, correlation, angular second moment (ASM), and homogeneity. Pathological results of biopsy specimens were the gold standard; comparison and assessment of the diagnosis efficiency were conducted for 2D-SWE, texture analysis and their combination. RESULTS: 2D-SWE displayed diagnosis efficiency in early fibrosis, significant fibrosis, severe fibrosis, and early cirrhosis (AUC \u3e 0.7, P \u3c 0.05) with respective AUC values of 0.823 (0.678-0.921), 0.808 (0.662-0.911), 0.920 (0.798-0.980), and 0.855 (0.716-0.943). Contrast and homogeneity displayed independent diagnosis efficiency in liver fibrosis stage (AUC \u3e 0.7, P \u3c 0.05), whereas correlation and ASM showed limited values. AUC of contrast and homogeneity were respectively 0.906 (0.779-0.973), 0.835 (0.693-0.930), 0.807 (0.660-0.910) and 0.925 (0.805-0.983), 0.789 (0.639-0.897), 0.736 (0.582-0.858), 0.705 (0.549-0.883) and 0.798 (0.650-0.904) in four liver fibrosis stages, which exhibited equivalence to 2D-SWE in diagnostic efficiency (P \u3e 0.05). Combined diagnosis (PRE) displayed diagnostic efficiency (AUC \u3e 0.7, P \u3c 0.01) for all fibrosis stages with respective AUC of 0.952 (0.841-0.994), 0.896 (0.766-0.967), 0.978 (0.881-0.999), 0.947 (0.835-0.992). The combined diagnosis showed higher diagnosis efficiency over 2D-SWE in early liver fibrosis (P \u3c 0.05), whereas no significant differences were observed in other comparisons (P \u3e 0.05). CONCLUSION: Texture analysis was capable of diagnosing liver fibrosis stage, combined diagnosis had obvious advantages in early liver fibrosis, liver fibrosis stage might be related to the hepatic tissue hardness distribution
    corecore