47 research outputs found
Islamic Astronomy in the Service of Yuan and Ming Monarchs
A substantial dissemination and influence of Islamic astronomy was first seen in China during the Mongolian Yuan dynasty which ruled the country between 1260 and 1368. An observatory equipped with Arabic instruments and books in astronomy was set up exclusively for Muslim astronomers, who were charged with the responsibilities similar to their Chinese counterparts. With the establishment of the Ming dynasty in 1368, Muslim astronomers were recruited not only from the former capital of the Yuan, but also from the Arabic areas to
serve the new dynasty. Islamic section continued to exist and function in the official establishment of astronomy all the way to the mid-17th century, when Jesuit missionaries began to introduce European astronomy to the country. For the first time, Chinese astronomers were sent to study with Muslim astronomers, and books on Islamic astronomy and astrology were translated into Chinese and became an ever-lasting source of inspiration for Chinese astronomers. In the official establishment, Arabic astronomy was adopted as a reference system in parallel with the orthodox Chinese system of calendrical astronomy, and applied not only in the calculation of civil almanacs and astronomical ephemerides, but also in the prediction luni-solar eclipses and occultations of the moon and the five planets, two important categories of portents in Chinese astrology
NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods
Glycosylation is a topic of intense current interest in the
development of biopharmaceuticals because it is related
to drug safety and efficacy. This work describes results of
an interlaboratory study on the glycosylation of the Primary
Sample (PS) of NISTmAb, a monoclonal antibody
reference material. Seventy-six laboratories from industry,
university, research, government, and hospital sectors
in Europe, North America, Asia, and Australia submit-
Avenue, Silver Spring, Maryland 20993; 22Glycoscience Research Laboratory, Genos, Borongajska cesta 83h, 10 000 Zagreb, Croatia;
23Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacˇ ic´ a 1, 10 000 Zagreb, Croatia; 24Department of Chemistry, Georgia
State University, 100 Piedmont Avenue, Atlanta, Georgia 30303; 25glyXera GmbH, Brenneckestrasse 20 * ZENIT / 39120 Magdeburg, Germany;
26Health Products and Foods Branch, Health Canada, AL 2201E, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9 Canada;
27Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama Higashi-Hiroshima 739–8530 Japan; 28ImmunoGen,
830 Winter Street, Waltham, Massachusetts 02451; 29Department of Medical Physiology, Jagiellonian University Medical College,
ul. Michalowskiego 12, 31–126 Krakow, Poland; 30Department of Pathology, Johns Hopkins University, 400 N. Broadway Street Baltimore,
Maryland 21287; 31Mass Spec Core Facility, KBI Biopharma, 1101 Hamlin Road Durham, North Carolina 27704; 32Division of Mass
Spectrometry, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongwon-gu, Cheongju Chungbuk, 363–883 Korea
(South); 33Advanced Therapy Products Research Division, Korea National Institute of Food and Drug Safety, 187 Osongsaengmyeong 2-ro
Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 363–700, Korea (South); 34Center for Proteomics and Metabolomics, Leiden
University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; 35Ludger Limited, Culham Science Centre, Abingdon,
Oxfordshire, OX14 3EB, United Kingdom; 36Biomolecular Discovery and Design Research Centre and ARC Centre of Excellence for Nanoscale
BioPhotonics (CNBP), Macquarie University, North Ryde, Australia; 37Proteomics, Central European Institute for Technology, Masaryk
University, Kamenice 5, A26, 625 00 BRNO, Czech Republic; 38Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse
1, 39106 Magdeburg, Germany; 39Department of Biomolecular Sciences, Max Planck Institute of Colloids and Interfaces, 14424
Potsdam, Germany; 40AstraZeneca, Granta Park, Cambridgeshire, CB21 6GH United Kingdom; 41Merck, 2015 Galloping Hill Rd, Kenilworth,
New Jersey 07033; 42Analytical R&D, MilliporeSigma, 2909 Laclede Ave. St. Louis, Missouri 63103; 43MS Bioworks, LLC, 3950 Varsity Drive
Ann Arbor, Michigan 48108; 44MSD, Molenstraat 110, 5342 CC Oss, The Netherlands; 45Exploratory Research Center on Life and Living
Systems (ExCELLS), National Institutes of Natural Sciences, 5–1 Higashiyama, Myodaiji, Okazaki 444–8787 Japan; 46Graduate School of
Pharmaceutical Sciences, Nagoya City University, 3–1 Tanabe-dori, Mizuhoku, Nagoya 467–8603 Japan; 47Medical & Biological Laboratories
Co., Ltd, 2-22-8 Chikusa, Chikusa-ku, Nagoya 464–0858 Japan; 48National Institute for Biological Standards and Control, Blanche Lane, South
Mimms, Potters Bar, Hertfordshire EN6 3QG United Kingdom; 49Division of Biological Chemistry & Biologicals, National Institute of Health
Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158–8501 Japan; 50New England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts
01938; 51New York University, 100 Washington Square East New York City, New York 10003; 52Target Discovery Institute, Nuffield Department
of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom; 53GlycoScience Group, The National Institute for
Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland; 54Department of Chemistry, North
Carolina State University, 2620 Yarborough Drive Raleigh, North Carolina 27695; 55Pantheon, 201 College Road East Princeton, New Jersey
08540; 56Pfizer Inc., 1 Burtt Road Andover, Massachusetts 01810; 57Proteodynamics, ZI La Varenne 20–22 rue Henri et Gilberte Goudier 63200
RIOM, France; 58ProZyme, Inc., 3832 Bay Center Place Hayward, California 94545; 59Koichi Tanaka Mass Spectrometry Research Laboratory,
Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho Nakagyo-ku, Kyoto, 604 8511 Japan; 60Children’s GMP LLC, St. Jude Children’s
Research Hospital, 262 Danny Thomas Place Memphis, Tennessee 38105; 61Sumitomo Bakelite Co., Ltd., 1–5 Muromati 1-Chome, Nishiku,
Kobe, 651–2241 Japan; 62Synthon Biopharmaceuticals, Microweg 22 P.O. Box 7071, 6503 GN Nijmegen, The Netherlands; 63Takeda
Pharmaceuticals International Co., 40 Landsdowne Street Cambridge, Massachusetts 02139; 64Department of Chemistry and Biochemistry,
Texas Tech University, 2500 Broadway, Lubbock, Texas 79409; 65Thermo Fisher Scientific, 1214 Oakmead Parkway Sunnyvale, California
94085; 66United States Pharmacopeia India Pvt. Ltd. IKP Knowledge Park, Genome Valley, Shamirpet, Turkapally Village, Medchal District,
Hyderabad 500 101 Telangana, India; 67Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; 68Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; 69Department of Chemistry, University of California, One Shields Ave,
Davis, California 95616; 70Horva´ th Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Doctoral
School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem ter 1, Hungary; 71Translational Glycomics
Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Egyetem ut 10, Hungary;
72Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way Newark, Delaware 19711; 73Proteomics Core Facility, University
of Gothenburg, Medicinaregatan 1G SE 41390 Gothenburg, Sweden; 74Department of Medical Biochemistry and Cell Biology, University of
Gothenburg, Institute of Biomedicine, Sahlgrenska Academy, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden; 75Department of
Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Bruna Straket 16, 41345 Gothenburg,
Sweden; 76Department of Chemistry, University of Hamburg, Martin Luther King Pl. 6 20146 Hamburg, Germany; 77Department of Chemistry,
University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2; 78Laboratory of Mass Spectrometry of Interactions and
Systems, University of Strasbourg, UMR Unistra-CNRS 7140, France; 79Natural and Medical Sciences Institute, University of Tu¨ bingen,
Markwiesenstrae 55, 72770 Reutlingen, Germany; 80Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; 81Division of Bioanalytical Chemistry, Amsterdam Institute for
Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; 82Department
of Chemistry, Waters Corporation, 34 Maple Street Milford, Massachusetts 01757; 83Zoetis, 333 Portage St. Kalamazoo, Michigan 49007
Author’s Choice—Final version open access under the terms of the Creative Commons CC-BY license.
Received July 24, 2019, and in revised form, August 26, 2019
Published, MCP Papers in Press, October 7, 2019, DOI 10.1074/mcp.RA119.001677
ER: NISTmAb Glycosylation Interlaboratory Study
12 Molecular & Cellular Proteomics 19.1
Downloaded from https://www.mcponline.org by guest on January 20, 2020
ted a total of 103 reports on glycan distributions. The
principal objective of this study was to report and compare
results for the full range of analytical methods presently
used in the glycosylation analysis of mAbs. Therefore,
participation was unrestricted, with laboratories
choosing their own measurement techniques. Protein glycosylation
was determined in various ways, including at
the level of intact mAb, protein fragments, glycopeptides,
or released glycans, using a wide variety of methods for
derivatization, separation, identification, and quantification.
Consequently, the diversity of results was enormous,
with the number of glycan compositions identified by
each laboratory ranging from 4 to 48. In total, one hundred
sixteen glycan compositions were reported, of which 57
compositions could be assigned consensus abundance
values. These consensus medians provide communityderived
values for NISTmAb PS. Agreement with the consensus
medians did not depend on the specific method or
laboratory type. The study provides a view of the current
state-of-the-art for biologic glycosylation measurement
and suggests a clear need for harmonization of glycosylation
analysis methods. Molecular & Cellular Proteomics
19: 11–30, 2020. DOI: 10.1074/mcp.RA119.001677.L
A Novel Deep Reinforcement Learning Approach to Traffic Signal Control with Connected Vehicles
The advent of connected vehicle (CV) technology offers new possibilities for a revolution in future transportation systems. With the availability of real-time traffic data from CVs, it is possible to more effectively optimize traffic signals to reduce congestion, increase fuel efficiency, and enhance road safety. The success of CV-based signal control depends on an accurate and computationally efficient model that accounts for the stochastic and nonlinear nature of the traffic flow. Without the necessity of prior knowledge of the traffic system’s model architecture, reinforcement learning (RL) is a promising tool to acquire the control policy through observing the transition of the traffic states. In this paper, we propose a novel data-driven traffic signal control method that leverages the latest in deep learning and reinforcement learning techniques. By incorporating a compressed representation of the traffic states, the proposed method overcomes the limitations of the existing methods in defining the action space to include more practical and flexible signal phases. The simulation results demonstrate the convergence and robust performance of the proposed method against several existing benchmark methods in terms of average vehicle speeds, queue length, wait time, and traffic density
Hyperspectral Identification of Ginseng Growth Years and Spectral Importance Analysis Based on Random Forest
The growth year of ginseng is very important as it affects its economic value and even defines if ginseng can be used as medicine or food. In the case of large-scale developments in the ginseng industry, a set of non-destructive, fast, and nonprofessional operations related to the growth year identification method is needed. The characteristics of ginseng reflectance spectral data were analyzed, and the growth year recognition model was constructed by a decision-tree-based random forest machine learning method. After independent verification, the accuracy of distinguishing ginseng food and medicine can reach 92.9%, with 6-year growth as the boundary, and 100%, with 5-year growth as the boundary. The research results show that the spectral change of ginseng is the most obvious in the fifth year, which provides a reference for the key research years based on chemical analyses and other methods. For the application of growth year recognition, the NIR band (1000–2500 nm) had little contribution to the recognition of ginseng growth years, and the band with the largest contribution was 400–650 nm. The recognition model based on machine learning provides a non-destructive, fast, and simple scheme with high accuracy for ginseng year recognition, and the spectral importance analysis conclusion of ginseng growth years provides a design reference for the development of special lightweight spectral equipment for year recognition
Bi-Module Sensing Device to <i>In Situ - Fig 5 </i> Quantitatively Detect Hydrogen Peroxide Released from Migrating Tumor Cells
<p>Cell migration quantified by hematoxylin and eosin (H&E) staining the polycarbonate membrane disassembled from device (A) photographs captured under microscopy: RPMI 1640 containing 10% serum in bottom chamber and serum-starved cells in top chamber (<i>a</i>), cells pre-treated by DPI (10 μM) (<i>b</i>), cells pre-treated by catalase (5 μg mL<sup>-1</sup>) (<i>d</i>), cells pre-treated by DMSO (0.5%, V/V) (<i>e</i>), serum-starved cells in a device containing serum free medium in top and bottom chambers (<i>c</i>), and fresh polycarbonate membrane after (H&E) staining (<i>f</i>). Red arrow points the migrating cells. (B) histogram of migrating cell percentage using cells loaded in a device without serum in top and bottom chambers as a reference, * denotes <i>p</i><0.01, n = 3.</p