76,933 research outputs found

    Adaptive Ising Model and Bacterial Chemotactic Receptor Network

    Full text link
    We present a so-called adaptive Ising model (AIM) to provide a unifying explanation for sensitivity and perfect adaptation in bacterial chemotactic signalling, based on coupling among receptor dimers. In an AIM, an external field, representing ligand binding, is randomly applied to a fraction of spins, representing the states of the receptor dimers, and there is a delayed negative feedback from the spin value on the local field. This model is solved in an adiabatic approach. If the feedback is slow and weak enough, as indeed in chemotactic signalling, the system evolves through quasi-equilibrium states and the ``magnetization'', representing the signal, always attenuates towards zero and is always sensitive to a subsequent stimulus.Comment: revtex, final version to appear in Europhysics Letter

    Charge Transfer Fluctuations as a QGP Signal

    Full text link
    In this study, we analyze the recently proposed charge transfer fluctuations within a finite pseudo-rapidity space. As the charge transfer fluctuation is a measure of the local charge correlation length, it is capable of detecting inhomogeneity in the hot and dense matter created by heavy ion collisions. We predict that going from peripheral to central collisions, the charge transfer fluctuations at midrapidity should decrease substantially while the charge transfer fluctuations at the edges of the observation window should decrease by a small amount. These are consequences of having a strongly inhomogeneous matter where the QGP component is concentrated around midrapidity. We also show how to constrain the values of the charge correlations lengths in both the hadronic phase and the QGP phase using the charge transfer fluctuations. Current manuscript is based on the preprints hep-ph/0503085 (to appear in Physical Review C) and nucl-th/0506025.Comment: To appear in the proceedings of 18th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions: Quark Matter 2005 (QM 2005), Budapest, Hungary, 4-9 Aug 200

    Novel thick-foam ferroelectret with engineered voids for energy harvesting applications

    Get PDF
    This work reports a novel thick-foam ferroelectret which is designed and engineered for energy harvesting applications. We fabricated this ferroelectret foam by mixing a chemical blowing agent with a polymer solution, then used heat treatment to activate the agent and create voids in the polymer foam. The dimensions of the foam, the density and size of voids can be well controlled in the fabrication process. Therefore, this ferroelectret can be engineered into optimized structure for energy harvesting applications

    Octet Baryon Charge Radii, Chiral Symmetry and Decuplet Intermediate States

    Full text link
    We compute the octet baryon charge radii to O(1/Heavy^3) in heavy baryon chiral perturbation theory. We examine the effect of including the decuplet of spin-3/2 baryons explicitly. We find that it does no t improve the level of agreement between the HBchiPT and experimental values for the Sigma^- charge radius.Comment: 9 pages, 2 figures. Uses axodraw.sty, include

    The Droplet State and the Compressibility Anomaly in Dilute 2D Electron Systems

    Full text link
    We investigate the space distribution of carrier density and the compressibility of two-dimensional (2D) electron systems by using the local density approximation. The strong correlation is simulated by the local exchange and correlation energies. A slowly varied disorder potential is applied to simulate the disorder effect. We show that the compressibility anomaly observed in 2D systems which accompanies the metal-insulator transition can be attributed to the formation of the droplet state due to disorder effect at low carrier densities.Comment: 4 pages, 3 figure
    • …
    corecore