16,521 research outputs found

    Fluctuations and correlations of net baryon number, electric charge and strangeness in a background magnetic field

    Full text link
    We present results on the second-order fluctuations of and correlations among net baryon number, electric charge and strangeness in (2+1)-flavor lattice QCD in the presence of a background magnetic field. Simulations are performed using the tree-level improved gauge action and the highly improved staggered quark (HISQ) action with a fixed scale approach (aa\simeq 0.117 fm). The light quark mass is set to be 1/10 of the physical strange quark mass and the corresponding pion mass is about 220 MeV at vanishing magnetic field. Simulations are performed on 323×Nτ32^3\times N_\tau lattices with 9 values of NτN_\tau varying from 96 to 6 corresponding to temperatures ranging from zero up to 281 MeV. The magnetic field strength eBeB is simulated with 15 different values up to \sim2.5 GeV2^2 at each nonzero temperature. We find that quadratic fluctuations and correlations do not show any singular behavior at zero temperature in the current window of eBeB while they develop peaked structures at nonzero temperatures as eBeB grows. By comparing the electric charge-related fluctuations and correlations with hadron resonance gas model calculations and ideal gas limits we find that the changes in degrees of freedom start at lower temperatures in stronger magnetic fields. Significant effects induced by magnetic fields on the isospin symmetry and ratios of net baryon number and baryon-strangeness correlation to strangeness fluctuation are observed, which could be useful for probing the existence of a magnetic field in heavy-ion collision experiments.Comment: 12 pages, 7 figures, invited contribution to The European Physical Journal A-Hadrons and Nuclei: Topical Issue on "QCD Phase Diagram in Strong Magnetic Fields", minor revisio

    Geometric entanglement from matrix product state representations

    Full text link
    An efficient scheme to compute the geometric entanglement per lattice site for quantum many-body systems on a periodic finite-size chain is proposed in the context of a tensor network algorithm based on the matrix product state representations. It is systematically tested for three prototypical critical quantum spin chains, which belong to the same Ising universality class. The simulation results lend strong support to the previous claim [Q.-Q. Shi, R. Or\'{u}s, J. O. Fj{\ae}restad, and H.-Q. Zhou, New J. Phys \textbf{12}, 025008 (2010); J.-M. St\'{e}phan, G. Misguich, and F. Alet, Phys. Rev. B \textbf{82}, 180406R (2010)] that the leading finite-size correction to the geometric entanglement per lattice site is universal, with its remarkable connection to the celebrated Affleck-Ludwig boundary entropy corresponding to a conformally invariant boundary condition.Comment: 4+ pages, 3 figure

    Dynamical and sequential decay effects on isoscaling and density dependence of the symmetry energy

    Full text link
    The isoscaling properties of the primary and final products are studied via isospin dependent quantum molecular dynamics (IQMD) model and the followed sequential decay model GEMINI, respectively. It is found that the isoscaling parameters α\alpha of both primary and final products keep no significant change for light fragments, but increases with the mass for intermediate and heavy products. The dynamical effects on isoscaling are exhibited by that α\alpha value decreases a little with the evolution time of the system, and opposite trend for the heavy products. The secondary decay effects on isoscaling are reflected in the increasing of the α\alpha value for the final products which experiences secondary decay process. Furthermore the density dependence of the symmetry energy has also been explored, it is observed that in the low densities the symmetry energy coefficient has the form of Csym(ρ)C0(ρ/ρ0)γC_{sym}(\rho)\sim C_{0}(\rho/\rho_{0})^{\gamma}, where γ=0.71.3\gamma = 0.7 \sim 1.3 for both primary and final products, but C0C_{0} have different values for primary and final products. It is also suggested that it might be more reasonable to describe the density dependence of the symmetry energy coefficient by the Csym(ρ/ρ0)C1(ρ/ρ0)γsoft+C2(ρ/ρ0)γstiffC_{sym}(\rho/\rho_{0})\approx C_{1}(\rho/\rho_{0})^{\gamma_{soft}} + C_{2}(\rho/\rho_{0})^{\gamma_{stiff}} with γsoft1\gamma_{soft}\leq 1, γstiff1\gamma_{stiff}\geq 1 and C1,C2C_{1}, C_{2} constant parameters.Comment: 10 pages, 10 figure

    Alfvenic Ion Temperature Gradient Activities in a Weak Magnetic Shear Plasma

    Full text link
    We report the first experimental evidence of Alfvenic ion temperature gradient (AITG) modes in HL-2A Ohmic plasmas. A group of oscillations with f=1540f=15-40 kHz and n=36n=3-6 is detected by various diagnostics in high-density Ohmic regimes. They appear in the plasmas with peaked density profiles and weak magnetic shear, which indicates that corresponding instabilities are excited by pressure gradients. The time trace of the fluctuation spectrogram can be either a frequency staircase, with different modes excited at different times or multiple modes may simultaneously coexist. Theoretical analyses by the extended generalized fishbone-like dispersion relation (GFLDR-E) reveal that mode frequencies scale with ion diamagnetic drift frequency and ηi\eta_i, and they lie in KBM-AITG-BAE frequency ranges. AITG modes are most unstable when the magnetic shear is small in low pressure gradient regions. Numerical solutions of the AITG/KBM equation also illuminate why AITG modes can be unstable for weak shear and low pressure gradients. It is worth emphasizing that these instabilities may be linked to the internal transport barrier (ITB) and H-mode pedestal physics for weak magnetic shear.Comment: 9 pages, 7 figure

    Competitions of magnetism and superconductivity in FeAs-based materials

    Full text link
    Using the numerical unrestricted Hartree-Fock approach, we study the ground state of a two-orbital model describing newly discovered FeAs-based superconductors. We observe the competition of a (0,π)(0, \pi) mode spin-density wave and the superconductivity as the doping concentration changes. There might be a small region in the electron-doping side where the magnetism and superconductivity coexist. The superconducting pairing is found to be spin singlet, orbital even, and mixed sxy_{xy} + dx2y2_{x^{2}-y^{2}} wave (even parity).Comment: 5 pages, 3 figure
    corecore