82,053 research outputs found

    Adaptive Ising Model and Bacterial Chemotactic Receptor Network

    Full text link
    We present a so-called adaptive Ising model (AIM) to provide a unifying explanation for sensitivity and perfect adaptation in bacterial chemotactic signalling, based on coupling among receptor dimers. In an AIM, an external field, representing ligand binding, is randomly applied to a fraction of spins, representing the states of the receptor dimers, and there is a delayed negative feedback from the spin value on the local field. This model is solved in an adiabatic approach. If the feedback is slow and weak enough, as indeed in chemotactic signalling, the system evolves through quasi-equilibrium states and the ``magnetization'', representing the signal, always attenuates towards zero and is always sensitive to a subsequent stimulus.Comment: revtex, final version to appear in Europhysics Letter

    Octet Baryon Charge Radii, Chiral Symmetry and Decuplet Intermediate States

    Full text link
    We compute the octet baryon charge radii to O(1/Heavy^3) in heavy baryon chiral perturbation theory. We examine the effect of including the decuplet of spin-3/2 baryons explicitly. We find that it does no t improve the level of agreement between the HBchiPT and experimental values for the Sigma^- charge radius.Comment: 9 pages, 2 figures. Uses axodraw.sty, include

    SU(N) Fermions in a One-Dimensional Harmonic Trap

    Full text link
    We conduct a theoretical study of SU(N) fermions confined by a one-dimensional harmonic potential. Firstly, we introduce a new numerical approach for solving the trapped interacting few-body problem, by which one may obtain accurate energy spectra across the full range of interaction strengths. In the strong-coupling limit, we map the SU(N) Hamiltonian to a spin-chain model. We then show that an existing, extremely accurate ansatz - derived for a Heisenberg SU(2) spin chain - is extendable to these N-component systems. Lastly, we consider balanced SU(N) Fermi gases that have an equal number of particles in each spin state for N=2, 3, 4. In the weak- and strong-coupling regimes, we find that the ground-state energies rapidly converge to their expected values in the thermodynamic limit with increasing atom number. This suggests that the many-body energetics of N-component fermions may be accurately inferred from the corresponding few-body systems of N distinguishable particles.Comment: 15 pages, 6 figure
    • …
    corecore