54,262 research outputs found
Non-LTE analysis of copper abundances for the two distinct halo populations in the solar neighborhood
Two distinct halo populations were found in the solar neighborhood by a
series of works. They can be clearly separated by [alpha\Fe] and several other
elemental abundance ratios including [Cu/Fe]. Very recently, a non-local
thermodynamic equilibrium (non-LTE) study revealed that relatively large
departures exist between LTE and non-LTE results in copper abundance analysis.
We aim to derive the copper abundances for the stars from the sample of Nissen
et al (2010) with both LTE and non-LTE calculations. Based on our results, we
study the non-LTE effects of copper and investigate whether the high-alpha
population can still be distinguished from the low-alpha population in the
non-LTE [Cu/Fe] results. Our differential abundance ratios are derived from the
high-resolution spectra collected from VLT/UVES and NOT/FIES spectrographs.
Applying the MAFAGS opacity sampling atmospheric models and spectrum synthesis
method, we derive the non-LTE copper abundances based on the new atomic model
with current atomic data obtained from both laboratory and theoretical
calculations. The copper abundances determined from non-LTE calculations are
increased by 0.01 to 0.2 dex depending on the stellar parameters compared with
the LTE results. The non-LTE [Cu/Fe] trend is much flatter than the LTE one in
the metallicity range -1.6<[Fe/H]<-0.8. Taking non-LTE effects into
consideration, the high- and low-alpha stars still show distinguishable copper
abundances, which appear even more clear in a diagram of non-LTE [Cu/Fe] versus
[Fe/H]. The non-LTE effects are strong for copper, especially in metal-poor
stars. Our results confirmed that there are two distinct halo populations in
the solar neighborhood. The dichotomy in copper abundance is a peculiar feature
of each population, suggesting that they formed in different environments and
evolved obeying diverse scenarios.Comment: 9 pages, 7 figures, 2 table
Recommended from our members
Experimental study on transcritical Rankine cycle (TRC) using CO2/R134a mixtures with various composition ratios for waste heat recovery from diesel engines
A carbon dioxide (CO2) based mixture was investigated as a promising solution to improve system performance and expand the condensation temperature range of a CO2 transcritical Rankine cycle (C-TRC). An experimental study of TRC using CO2/R134a mixtures was performed to recover waste heat of engine coolant and exhaust gas from a heavy-duty diesel engine. The main purpose of this study was to investigate experimentally the effect of the composition ratio of CO2/R134a mixtures on system performance. Four CO2/R134a mixtures with mass composition ratios of 0.85/0.15, 0.7/0.3, 0.6/0.4 and 0.4/0.6 were selected. The high temperature working fluid was expanded through an expansion valve and then no power was produced. Thus, current research focused on the analysis of measured operating parameters and heat exchanger performance. Heat transfer coefficients of various heat exchangers using supercritical CO2/R134a mixtures were provided and discussed. These data may provide useful reference for cycle optimization and heat exchanger design in application of CO2 mixtures. Finally, the potential of power output was estimated numerically. Assuming an expander efficiency of 0.7, the maximum estimations of net power output using CO2/R134a (0.85/0.15), CO2/R134a (0.7/0.3), CO2/R134a (0.6/0.4) and CO2/R134a (0.4/0.6) are 5.07 kW, 5.45 kW, 5.30 kW, and 4.41 kW, respectively. Along with the increase of R134a composition, the estimation of net power output, thermal efficiency and exergy efficiency increased at first and then decreased. CO2/R134a (0.7/0.3) achieved the maximum net power output at a high expansion inlet pressure, while CO2/R134a (0.6/0.4) behaves better at low pressure
On methods to determine bounds on the Q-factor for a given directivity
This paper revisit and extend the interesting case of bounds on the Q-factor
for a given directivity for a small antenna of arbitrary shape. A higher
directivity in a small antenna is closely connected with a narrow impedance
bandwidth. The relation between bandwidth and a desired directivity is still
not fully understood, not even for small antennas. Initial investigations in
this direction has related the radius of a circumscribing sphere to the
directivity, and bounds on the Q-factor has also been derived for a partial
directivity in a given direction. In this paper we derive lower bounds on the
Q-factor for a total desired directivity for an arbitrarily shaped antenna in a
given direction as a convex problem using semi-definite relaxation techniques
(SDR). We also show that the relaxed solution is also a solution of the
original problem of determining the lower Q-factor bound for a total desired
directivity.
SDR can also be used to relax a class of other interesting non-convex
constraints in antenna optimization such as tuning, losses, front-to-back
ratio. We compare two different new methods to determine the lowest Q-factor
for arbitrary shaped antennas for a given total directivity. We also compare
our results with full EM-simulations of a parasitic element antenna with high
directivity.Comment: Correct some minor typos in the previous versio
Recommended from our members
Preliminary experimental comparison and feasibility analysis of CO2/R134a mixture in Organic Rankine Cycle for waste heat recovery from diesel engines
This paper presents results of a preliminary experimental study of the Organic Rankine Cycle (ORC) using CO2/R134a mixture based on an expansion valve. The goal of the research was to examine the feasibility and effectiveness of using CO2 mixtures to improve system performance and expand the range of condensation temperature for ORC system. The mixture of CO2/R134a (0.6/0.4) on a mass basis was selected for comparison with pure CO2 in both the preheating ORC (P-ORC) and the preheating regenerative ORC (PR-ORC). Then, the feasibility and application potential of CO2/R134a (0.6/0.4) mixture for waste heat recovery from engines was tested under ambient cooling conditions. Preliminary experimental results using an expansion valve indicate that CO2/R134a (0.6/0.4) mixture exhibits better system performance than pure CO2. For PR-ORC using CO2/R134a (0.6/0.4) mixture, assuming a turbine isentropic efficiency of 0.7, the net power output estimation, thermal efficiency and exergy efficiency reached up to 5.30 kW, 10.14% and 24.34%, respectively. For the fitting value at an expansion inlet pressure of 10 MPa, the net power output estimation, thermal efficiency and exergy efficiency using CO2/R134a (0.6/0.4) mixture achieved increases of 23.3%, 16.4% and 23.7%, respectively, versus results using pure CO2 as the working fluid. Finally, experiments showed that the ORC system using CO2/R134a (0.6/0.4) mixture is capable of operating stably under ambient cooling conditions (25.2–31.5 °C), demonstrating that CO2/R134a mixture can expand the range of condensation temperature and alleviate the low-temperature condensation issue encountered with CO2. Under the ambient cooling source, it is expected that ORC using CO2/R134a (0.6/0.4) mixture will improve the thermal efficiency of a diesel engine by 1.9%
- …