185 research outputs found

    A privacy-preserving, decentralized and functional Bitcoin e-voting protocol

    Full text link
    Bitcoin, as a decentralized digital currency, has caused extensive research interest. There are many studies based on related protocols on Bitcoin, Bitcoin-based voting protocols also received attention in related literature. In this paper, we propose a Bitcoin-based decentralized privacy-preserving voting mechanism. It is assumed that there are n voters and m candidates. The candidate who obtains t ballots can get x Bitcoins from each voter, namely nx Bitcoins in total. We use a shuffling mechanism to protect voter's voting privacy, at the same time, decentralized threshold signatures were used to guarantee security and assign voting rights. The protocol can achieve correctness, decentralization and privacy-preservings. By contrast with other schemes, our protocol has a smaller number of transactions and can achieve a more functional voting method.Comment: 5 pages;3 figures;Smartworld 201

    The Limit Order Book Recreation Model (LOBRM): An Extended Analysis

    Get PDF
    The limit order book (LOB) depicts the fine-grained demand and supply relationship for financial assets and is widely used in market microstructure studies. Nevertheless, the availability and high cost of LOB data restrict its wider application. The LOB recreation model (LOBRM) was recently proposed to bridge this gap by synthesizing the LOB from trades and quotes (TAQ) data. However, in the original LOBRM study, there were two limitations: (1) experiments were conducted on a relatively small dataset containing only one day of LOB data; and (2) the training and testing were performed in a non-chronological fashion, which essentially re-frames the task as interpolation and potentially introduces lookahead bias. In this study, we extend the research on LOBRM and further validate its use in real-world application scenarios. We first advance the workflow of LOBRM by (1) adding a time-weighted z-score standardization for the LOB and (2) substituting the ordinary differential equation kernel with an exponential decay kernel to lower computation complexity. Experiments are conducted on the extended LOBSTER dataset in a chronological fashion, as it would be used in a real-world application. We find that (1) LOBRM with decay kernel is superior to traditional non-linear models, and module ensembling is effective; (2) prediction accuracy is negatively related to the volatility of order volumes resting in the LOB; (3) the proposed sparse encoding method for TAQ exhibits good generalization ability and can facilitate manifold tasks; and (4) the influence of stochastic drift on prediction accuracy can be alleviated by increasing historical samples.Comment: 16 pages, preprint accepted for publication in the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2021

    VLPrompt: Vision-Language Prompting for Panoptic Scene Graph Generation

    Full text link
    Panoptic Scene Graph Generation (PSG) aims at achieving a comprehensive image understanding by simultaneously segmenting objects and predicting relations among objects. However, the long-tail problem among relations leads to unsatisfactory results in real-world applications. Prior methods predominantly rely on vision information or utilize limited language information, such as object or relation names, thereby overlooking the utility of language information. Leveraging the recent progress in Large Language Models (LLMs), we propose to use language information to assist relation prediction, particularly for rare relations. To this end, we propose the Vision-Language Prompting (VLPrompt) model, which acquires vision information from images and language information from LLMs. Then, through a prompter network based on attention mechanism, it achieves precise relation prediction. Our extensive experiments show that VLPrompt significantly outperforms previous state-of-the-art methods on the PSG dataset, proving the effectiveness of incorporating language information and alleviating the long-tail problem of relations.Comment: 19 pages, 9 figure

    HiLo: Exploiting High Low Frequency Relations for Unbiased Panoptic Scene Graph Generation

    Get PDF
    Panoptic Scene Graph generation (PSG) is a recently proposed task in image scene understanding that aims to segment the image and extract triplets of subjects, objects and their relations to build a scene graph. This task is particularly challenging for two reasons. First, it suffers from a long-tail problem in its relation categories, making naive biased methods more inclined to high-frequency relations. Existing unbiased methods tackle the long-tail problem by data/loss rebalancing to favor low-frequency relations. Second, a subject-object pair can have two or more semantically overlapping relations. While existing methods favor one over the other, our proposed HiLo framework lets different network branches specialize on low and high frequency relations, enforce their consistency and fuse the results. To the best of our knowledge we are the first to propose an explicitly unbiased PSG method. In extensive experiments we show that our HiLo framework achieves state-of-the-art results on the PSG task. We also apply our method to the Scene Graph Generation task that predicts boxes instead of masks and see improvements over all baseline methods

    Text Promptable Surgical Instrument Segmentation with Vision-Language Models

    Get PDF
    In this paper, we propose a novel text promptable surgical instrument segmentation approach to overcome challenges associated with diversity and differentiation of surgical instruments in minimally invasive surgeries. We redefine the task as text promptable, thereby enabling a more nuanced comprehension of surgical instruments and adaptability to new instrument types. Inspired by recent advancements in vision-language models, we leverage pretrained image and text encoders as our model backbone and design a text promptable mask decoder consisting of attention- and convolution-based prompting schemes for surgical instrument segmentation prediction. Our model leverages multiple text prompts for each surgical instrument through a new mixture of prompts mechanism, resulting in enhanced segmentation performance. Additionally, we introduce a hard instrument area reinforcement module to improve image feature comprehension and segmentation precision. Extensive experiments on several surgical instrument segmentation datasets demonstrate our model's superior performance and promising generalization capability. To our knowledge, this is the first implementation of a promptable approach to surgical instrument segmentation, offering significant potential for practical application in the field of robotic-assisted surgery. Code is available at https://github.com/franciszzj/TP-SIS

    Frequency-astigmatism asymmetric nonlinear conversion of structured light lasers

    Full text link
    Nonlinear optics of structured light has recently delivered intriguing fundamental physical phenomena in light-matter interactions and advanced applications from classical imaging to quantum informatics. The mutual interaction between spin, orbital angular momentum (OAM) and wavelength is extensively studied in such cases. In this work, we go beyond only considering OAM and wavelength by taking the nonlinear frequency conversion and transverse mode astigmatism conversion as two building blocks and investigating how single modes and complicated multiplexed modes evolve after them. In particular, We found a generalized law of nonlinear conversion structured light from experiments and theories, that the converted modes are highly related to the sequence of these two blocks, obeying an inherent (non)commutative rule in which. This effect not only creates extended structured laser modes but serve as new rules in nonlinear structured light manipulation
    • …
    corecore