20 research outputs found

    Constructing Pd/ferroelectric Bi4Ti(3)O(12) nanoflake interfaces for O-2 activation and boosting NO photo-oxidation

    No full text
    Photo-oxidative NOx removal often encountered with sluggish charge carrier separation kinetics and poor selectivity. Herein, Pd/ferroelectric Bi4Ti3O12 nanoflakes (Pd/BTO NF) were constructed to investigate the photo-excited charge separation, O2 activation and the generated reactive oxygen species (ROS) in dictating NO removal. Results showed that the depolarization field of ferroelectric BTO NF significantly promoted bulk charge separation, leading to boosted NO removal reaction kinetics (10 times higher) for Pd/BTO NF comparing with Pd/TiO2. Revealed by electronic paramagnetic resonance and radical scavenging tests, it is observed that the primary O2 activation species differed among Pd, Ag and Pt supported BTO NF photocatalysts, which resulted in different selectivity. The underlying mechanism of NO photo-oxidative conversion pathway was studied by in situ diffuse reflectance infrared Fourier transform spectroscopy. This work illustrate that metal/ferroelectric interfaces can be tuned to obtain differing O2 activation species, and notable selectivity changes in photocatalysis mediated environmental remediation reactions

    An artificial neural network model for evaluating the risk of hyperuricaemia in type 2 diabetes mellitus

    No full text
    Abstract Type 2 diabetes with hyperuricaemia may lead to gout, kidney damage, hypertension, coronary heart disease, etc., further aggravating the condition of diabetes as well as adding to the medical and financial burden. To construct a risk model for hyperuricaemia in patients with type 2 diabetes mellitus based on artificial neural network, and to evaluate the effectiveness of the risk model to provide directions for the prevention and control of the disease in this population. From June to December 2022, 8243 patients with type 2 diabetes were recruited from six community service centers for questionnaire and physical examination. Secondly, the collected data were used to select suitable variables and based on the comparison results, logistic regression was used to screen the variable characteristics. Finally, three risk models for evaluating the risk of hyperuricaemia in type 2 diabetes mellitus were developed using an artificial neural network algorithm and evaluated for performance. A total of eleven factors affecting the development of hyperuricaemia in patients with type 2 diabetes mellitus in this study, including gender, waist circumference, diabetes medication use, diastolic blood pressure, γ-glutamyl transferase, blood urea nitrogen, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, fasting glucose and estimated glomerular filtration rate. Among the generated models, baseline & biochemical risk model had the best performance with cutoff, area under the curve, accuracy, recall, specificity, positive likelihood ratio, negative likelihood ratio, precision, negative predictive value, KAPPA and F1-score were 0.488, 0.744, 0.689, 0.625, 0.749, 2.489, 0.501, 0.697, 0.684, 0.375 and 0.659. In addition, its Brier score was 0.169 and the calibration curve also showed good agreement between fitting and observation. The constructed artificial neural network model has better efficacy and facilitates the reduction of the harm caused by type 2 diabetes mellitus combined with hyperuricaemia

    Prognostic value of tertiary lymphoid structures (TLS) in digestive system cancers: a systematic review and meta-analysis

    No full text
    Abstract Background Existing literature suggests that tertiary lymphatic structure (TLS) is associated with the progression of cancer. However, the prognostic role of TLS in digestive system cancers remains controversial. This meta-analysis aims to synthesize currently available evidence in the association between TLS and the survival of digestive system cancers. Methods We systematically searched three digital databases (PubMed, Embase, Web of Science) for articles published from database inception to December 23, 2022. Study selection criteria are based on PECO framework: P (population: patients with digestive system cancers), E (exposure: presence of TLS), C (comparator: absence of TLS), O (outcome: overall survival, OS; recurrence-free survival, RFS; disease-free survival, DFS). The Quality in Prognostic Studies (QUIPS) tool was used to assess risk of bias for included studies. The study protocol was registered with PROSPERO (CRD42023416307). Results A total of 25 studies with 6910 patients were included into the final meta-analysis. Random-effects models revealed that the absence of TLS was associated with compromised OS, RFS, and DFS of digestive system cancers, with pooled hazard ratios (HRs) of 1.74 (95% CI: 1.50–2.03), 1.96 (95% CI: 1.58–2.44), and 1.81 (95% CI: 1.49–2.19), respectively. Subgroup analyses disclosed a stronger TLS-survival association for pancreatic cancer, compared with other digestive system cancers. Conclusion TLS may be of prognostic significance for digestive system cancers. More original studies are needed to further corroborate this finding

    Social poverty indicators with school bullying victimization: evidence from the global school-based student health survey (GSHS)

    No full text
    Abstract Background School bullying is prevalent in children and adolescents. Bullying victims are seen higher risk of negative psychological outcomes. Previously published studies suggested that social indicators may pose significant influence on bullying victimization. However, the association between social poverty and bullying victimization has not been exclusively discussed. Methods In this cross-sectional study, we analyzed the association between 6 commonly used social poverty indicators (Poverty Headcount Ratio, PHR; Poverty Gap, PG; Squared Poverty Gap, SPG; monthly household per capita income, PCI; Watts’ Poverty Index, WPI; the Gini Index, Gini) and the prevalence of school bullying at country level by using the Global school-based Student Health Survey (GSHS) database. Results Altogether 16 countries were included into the final analysis, with school bullying victimization prevalence ranged from 12.9 to 47.5%. Bubble plots revealed statistically significant associations between the three indicators measuring absolute poverty level (PHR, PCI, WPI) and bullying victimization. Subsequently performed principal component regression indicated that, for all types of bullying victimization, the increase of absolute poverty level was related to elevated prevalence rates, and the association was particularly strong for verbal bullying victimization. Conclusions Our study results may suggest that absolute social poverty is an important parameter for constructing and implementing school bullying victimization intervention strategies and measures

    Hepatocyte growth factor-mediated apoptosis mechanisms of cytotoxic CD8+ T cells in normal and cirrhotic livers

    No full text
    Abstract Intrahepatic stem/progenitor cells and cytotoxic CD8+ T cells (CD8+ T cells) in the cirrhotic liver undergo apoptosis, which potentially facilitates progression to cancer. Here, we report that hepatocyte growth factor (HGF) signaling plays an important role in promoting normal and damaged liver CD8+ T cell Fas-mediated apoptosis through its only receptor, c-Met. In addition to binding with HGF, c-Met also binds to Fas to form a complex. Using a diethylnitrosamine (DEN)-induced liver fibrosis/cirrhosis mouse model, immunostaining, and terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) staining, we found that HGF secretion was significantly higher at 10 weeks post-DEN, the liver cirrhotic phase (LCP), than at 3 weeks post-DEN, the liver fibrotic phase (LFP). Correspondingly, differences in CD8+ T cell proliferation and apoptosis were noted between the two phases. Interestingly, staining and TUNEL assays revealed lower smooth muscle actin (α-SMA)+ cell apoptosis, a marker for hepatic stellate cells (HSCs), in the LFP group than in the LCP group, which suggested a beneficial correlation among HGF, CD8+ T cells and HSCs in improving the fibrotic load during damaged liver repair. In cultures, when met different concentrations of recombinant HGF (rHGF), phytohemagglutinin (PHA)-stimulated naive mouse splenic CD8+ T cells (pn-msCD8+ T cells) responded differently; as increases in rHGF increased were associated with decreases in the clonal numbers of pn-msCD8+ T cells, and when the rHGF dose was greater than 200 ng/mL, the clonal numbers significantly decreased. In the presence of 400 ng/mL rHGF, the death-inducing signaling complex (DISC) can be directly activated in both nsCD8+ T cells and healthy human peripheral blood CD8+ T cells (hp-CD8+ T cells), as indicated by recruitment of FADD and caspase-8 because DISC forms via the recruitment of FADD and caspase-8, among others. These findings suggest that Fas-mediated apoptosis, may also indicate a regulatory role of HGF signaling in hepatic homeostasis

    Green manure incorporation enhanced soil labile phosphorus and fruit tree growth

    Get PDF
    IntroductionThe incorporation of green manures substantially enhances the conversion of external phosphorus (P) fertilizers and soil-reserved P into forms readily available to plants. The study aims to evaluate the influence of green manure additions on soil phosphorus dynamics and citrus growth, considering different green manure species and initial soil phosphorus levels. Additionally, the research seeks to elucidate the microbiological mechanisms underlying the observed effects.MethodsA citrus pot experiment was conducted under both P-surplus (1.50 g·P·kg-1) and P-deficient (0.17 g·P·kg-1) soils with incorporating legume (Leg), non-legume (Non-Leg) or no green manure residues (CK), and 18O-P labeled KH2PO4 (0.5 g, containing 80‰ δ18Op) was additionally introduced to trace the turnover characteristics of chemical P fertilizer mediated by soil microorganisms.Results and discussionIn P-surplus soil, compared with the CK treatment, the Leg treatment significantly increased soil H2O-Pi (13.6%), NaHCO3-Po (8.9%), NaOH-Pi (9.5%) and NaOH-Po (30.0%) content. It also promoted rapid turnover of P sources into H2O-Pi and NaHCO3-Pi pools by enhancing the phoC (576.6%) gene abundance. In contrast, the Non-Leg treatment significantly augmented soil H2O-Pi (9.2%) and NaHCO3-Po (8.5%) content, facilitating the turnover of P sources into NaHCO3-Pi pools. Under P-deficient soil conditions, compared with the CK treatment, the Leg treatment notably raised soil H2O-Pi (150.0%), NaHCO3-Pi (66.3%), NaHCO3-Po (34.8%) and NaOH-Pi (59.0%) content, contributing to the transfer of P sources into NaHCO3-Pi and NaOH-Pi pools. This effect was achieved through elevated ALP (33.8%) and ACP (12.9%) activities and increased pqqC (48.1%), phoC (42.9%), phoD (21.7%), and bpp (27.4%) gene abundances. The Non-Leg treatment, on the other hand, led to significant increases in soil NaHCO3-Pi (299.0%) and NaHCO3-Po (132.6%) content, thereby facilitating the turnover of P sources into NaHCO3-Pi and NaOH-Pi pools, except for the phoC gene abundance. Both Leg and Non-Leg treatments significantly improved citrus growth (7.3-20.0%) and P uptake (15.4-42.1%) in P-deficient soil but yielded no substantial effects in P-surplus soil. In summary, introducing green manure crops, particularly legume green manure, emerges as a valuable approach to enhance soil P availability and foster fruit tree growth in orchard production

    Adaptive Amphiphilic Dendrimer-Based Nanoassemblies as Robust and Versatile siRNA Delivery Systems

    No full text
    siRNA delivery remains a major challenge in RNAi- based therapy. Here, we report for the first time that an amphiphilic dendrimer is able to self-assemble into adaptive supramolecular assemblies upon interaction with siRNA, and effectively delivers siRNAs to various cell lines, including human primary and stem cells, thereby outperforming the currently available nonviral vectors. In addition, this amphi- philic dendrimer is able to harness the advantageous features of both polymer and lipid vectors and hence promotes effective siRNA delivery. Our study demonstrates for the first time that dendrimer-based adaptive supramolecular assemblies repre- sent novel and versatile means for functional siRNA delivery, heralding a new age of dendrimer-based self-assembled drug delivery in biomedical applications

    Aptamers targeting SARS-CoV-2 nucleocapsid protein exhibit potential anti pan-coronavirus activity

    No full text
    Abstract Emerging and recurrent infectious diseases caused by human coronaviruses (HCoVs) continue to pose a significant threat to global public health security. In light of this ongoing threat, the development of a broad-spectrum drug to combat HCoVs is an urgently priority. Herein, we report a series of anti-pan-coronavirus ssDNA aptamers screened using Systematic Evolution of Ligands by Exponential Enrichment (SELEX). These aptamers have nanomolar affinity with the nucleocapsid protein (NP) of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and also show excellent binding efficiency to the N proteins of both SARS, MERS, HCoV-OC43 and -NL63 with affinity KD values of 1.31 to 135.36 nM. Such aptamer-based therapeutics exhibited potent antiviral activity against both the authentic SARS-CoV-2 prototype strain and the Omicron variant (BA.5) with EC50 values at 2.00 nM and 41.08 nM, respectively. The protein docking analysis also evidenced that these aptamers exhibit strong affinities for N proteins of pan-coronavirus and other HCoVs (−229E and -HKU1). In conclusion, we have identified six aptamers with a high pan-coronavirus antiviral activity, which could potentially serve as an effective strategy for preventing infections by unknown coronaviruses and addressing the ongoing global health threat
    corecore