81 research outputs found

    Hierarchical quantum master equation with semiclassical Drude dissipation

    Full text link
    We propose a nonperturbative quantum dissipation theory, in term of hierarchical quantum master equation. It may be used with a great degree of confidence to various dynamics systems in condensed phases. The theoretical development is rooted in an improved semiclassical treatment of Drude bath, beyond the conventional high temperature approximations. It leads to the new theory a simple modification but important improvement over the conventional stochastic Liouville equation theory, without extra numerical cost. Its broad range of validity and applicability is extensively demonstrated with two--level electron transfer model systems, where the new theory can be considered as the modified Zusman equation. We also present a criterion, which depends only on the system--bath coupling strength, characteristic bath memory time, and temperature, to estimate the performance of the hierarchical quantum master equation.Comment: 10 pages, 8 figures, submitted to J. Chem. Phys. on 2009-08-0

    Hierarchical theory of quantum dissipation: Partial fraction decomposition scheme

    Full text link
    We propose a partial fraction decomposition scheme to the construction of hierarchical equations of motion theory for bosonic quantum dissipation systems. The expansion of Bose--Einstein function in this scheme shows similar properties as it applies for Fermi function. The performance of the resulting quantum dissipation theory is exemplified with spin--boson systems. In all cases we have tested the new theory performs much better, about an order of magnitude faster, than the best available conventional theory based on Matsubara spectral decomposition scheme.Comment: 8 pages, 3 figures, submitted to Chemical Physics special issue "Dynamics of molecular systems: From quantum to classical

    Possible Meissner effect near room temperature in copper-substituted lead apatite

    Full text link
    With copper-substituted lead apatite below room temperature, we observe diamagnetic dc magnetization under magnetic field of 25 Oe with remarkable bifurcation between zero-field-cooling and field-cooling measurements, and under 200 Oe it changes to be paramagnetism. A glassy memory effect is found during cooling. Typical hysteresis loops for superconductors are detected below 250 K, along with an asymmetry between forward and backward sweep of magnetic field. Our experiment suggests at room temperature the Meissner effect is possibly present in this material.Comment: 7 pages, 4 figure

    Real-time counting of single electron tunneling through a T-shaped double quantum dot system

    Full text link
    Real-time detection of single electron tunneling through a T-shaped double quantum dot is simulated, based on a Monte Carlo scheme. The double dot is embedded in a dissipative environment and the presence of electrons on the double dot is detected with a nearby quantum point contact. We demonstrate directly the bunching behavior in electron transport, which leads eventually to a super-Poissonian noise. Particularly, in the context of full counting statistics, we investigate the essential difference between the dephasing mechanisms induced by the quantum point contact detection and the coupling to the external phonon bath. A number of intriguing noise features associated with various transport mechanisms are revealed.Comment: 8 pages, 5 figure

    Association between daily screen time and risk of stroke among middle-aged and elderly people: research based on China health and nutrition survey

    Get PDF
    BackgroundWe aimed to explore the independent associations between screen time and the risk of stroke among Chinese adults based on the China Health and Nutrition Survey (CHNS).MethodsData on Chinese adults aged older than 40 years from the CHNS in during 2004–2009 were selected. A total of 4,587 individuals were included in 2009, including screen time and the risk of stroke. Simultaneously, we traced the previous screen time to 2004 for those with outcome measures in 2009 (n = 2,100). Basic information, lifestyle, and screen behavior were obtained through face-to-face interviews and self-completed questionnaires. Anthropometric data collected included blood pressure, body weight, height, hip circumference, and waist circumference. Fasting blood was obtained for measurements of lipid and glucose levels. Cross-sectional analysis and cohort analysis were both performed using multivariate logistic regression.ResultsOf all participants, 3,004 (65.49%) participants spent more than 2 h per day on screen time. Taking the men who spent less than 2 h on screen per day as reference, the crude odds ratio (OR) of the high risk of stroke was 1.53 [95% confidence interval (CI), 1.20–1.95] for the men who spent 2–3 h per day on screen and 2.37 (95% CI, 1.78–3.16) for the men who spent more than 3 h per day on screen. This difference remained significant after adjusting for confounding factors. No association was observed among women. However, in the cohort analysis with screen time in 2006 as the independent variable, the association between screen time and stroke risk was found both in men [OR, 1.83 (95% CI, 1.19–2.82)] and women [OR, 1.48 (95% CI, 1.10–1.99)]).ConclusionWe found that the high screen time was associated with an increased stroke risk, which was pronounced in men, warranting a universal need to limit screen time in order to improve health

    A critical role of RBM8a in proliferation and differentiation of embryonic neural progenitors

    Get PDF
    BACKGROUND: Nonsense mediated mRNA decay (NMD) is an RNA surveillance mechanism that controls RNA stability and ensures the speedy degradation of erroneous and unnecessary transcripts. This mechanism depends on several core factors in the exon junction complex (EJC), eIF4A3, RBM8a, Magoh, and BTZ, as well as peripheral factors to distinguish premature stop codons (PTCs) from normal stop codons in transcripts. Recently, emerging evidence has indicated that NMD factors are associated with neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID). However, the mechanism in which these factors control embryonic brain development is not clear. RESULT: We found that RBM8a is critical for proliferation and differentiation in cortical neural progenitor cells (NPCs). RBM8a is highly expressed in the subventricular zone (SVZ) of the early embryonic cortex, suggesting that RBM8a may play a role in regulating NPCs. RBM8a overexpression stimulates embryonic NPC proliferation and suppresses neuronal differentiation. Conversely, knockdown of RBM8a in the neocortex reduces NPC proliferation and promotes premature neuronal differentiation. Moreover, overexpression of RBM8a suppresses cell cycle exit and keeps cortical NPCs in a proliferative state. To uncover the underlying mechanisms of this phenotype, genome-wide RNAseq was used to identify potential downstream genes of RBM8a in the brain, which have been implicated in autism and neurodevelopmental disorders. Interestingly, autism and schizophrenia risk genes are highly represented in downstream transcripts of RBM8a. In addition, RBM8a regulates multiple alternative splicing genes and NMD targets that are implicated in ASD. Taken together, this data suggests a novel role of RBM8a in the regulation of neurodevelopment. CONCLUSIONS: Our studies provide some insight into causes of mental illnesses and will facilitate the development of new therapeutic strategies for neurodevelopmental illnesses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13064-015-0045-7) contains supplementary material, which is available to authorized users

    IL-1β promotes stemness and invasiveness of colon cancer cells through Zeb1 activation

    Get PDF
    Background: IL-1β is a pleiotropic pro-inflammatory cytokine and its up-regulation is closely associated with various cancers including gastrointestinal tumors. However, it remains unclear how IL-1β may contribute to the initiation and development of these inflammation-associated cancers. Here we investigated the role of IL-1β in colon cancer stem cell (CSC) development. Methods: Using self-renewal assay, soft-agar assay, invasion assay, real-time PCR analysis, immunoblot assay and shRNA knockdown, we determined the effects of IL-1β on cancer stem cell development and epithelial-mesenchymal transition (EMT) in human primary colon cancer cells and colon cancer cell line HCT-116. Results: We found that IL-1β can increase sphere-forming capability of colon cancer cells in serum-free medium. IL-1β-induced spheres displayed an up-regulation of stemness factor genes (Bmi1 and Nestin) and increased drug resistance, hallmarks of CSCs. Importantly, expression of EMT activator Zeb1 was increased in IL-1β-induced spheres, indicating that there might be a close association between EMT and IL-1β-induced CSC self-renewal. Indeed, IL-1β treatment led to EMT of colon cancer cells with loss of E-cadherin, up-regulation of Zeb1, and gain of the mesenchymal phenotype. Furthermore, shRNA-mediated knockdown of Zeb1 in HCT-116 cells reversed IL-1β-induced EMT and stem cell formation. Conclusion: Our findings indicate that IL-1β may promote colon tumor growth and invasion through activation of CSC self-renewal and EMT, and Zeb1 plays a critical role in these two processes. Thus, IL-1β and Zeb1 might be new therapeutic targets against colon cancer stem cells

    Optical line shapes of molecular aggregates: Hierarchical equations of motion method

    No full text
    The absorption line shapes of model molecular aggregates are investigated using the recently developed Liouville space hierarchical equations of motion (HEOM) method. The exact results are further exploited for the assessment of several approximation schemes, including the high temperature approximation of HEOM, the stochastic Liouville equation approach, and the perturbative time-local and time-nonlocal quantum master equations (QMEs). The calculations on dimers, larger ring-shaped aggregates, and a model of the B850 ring in the LH2 of purple bacteria show that while the other approximate methods can give reasonable absorption line shapes over a wide range of parameter regimes, the second-order time-nonlocal QME is generally inaccurate and may give spurious peaks in the absorption spectra
    corecore