360 research outputs found
Recommended from our members
Exosomes promote pre-metastatic niche formation in ovarian cancer.
Ovarian cancer is one of the most common gynecological malignancies. Upon initial diagnosis, the majority of patients present with widespread metastatic growth within the peritoneal cavity. This metastatic growth occurs in stages, with the formation of a pre-metastatic niche occurring prior to macroscopic tumor cell invasion. Exosomes released by the primary ovarian tumor are small extracellular vesicles which prepare the distant tumor microenvironment for accelerated metastatic invasion. They regulate intercellular communication between tumor cells and normal stroma, cancer-associated fibroblasts, and local immune cells within the tumor microenvironment. In this review, we highlight the emerging roles of ovarian cancer exosomes as coordinators of pre-metastatic niche formation, biomarkers amenable to liquid biopsy, and targets of chemotherapy
Analysis of Hot Points on Data Mining Research of Medical in Foreign Countries
To promote the current development of medical data mining research, a quantitative statistics and qualitative analysis of the papers in the field of medical data mining technologies were made with the methodology of bibliometric and knowledge mapping, which were enlisted in the database of Web of Science analyzing the general situation of the papers about data mining from several aspects: period sequences, subject funds, countries and regions, core authors and research institutions, the hotspots and research frontiers. Our analysis exposed that the research of data mining in medical showed a multi-disciplinary integration of the development trend, but high-yield leading author group has not yet formed. It is important to note that scholars should raise awareness of clinical medical data mining as well as explore new research directions for further studying
Giant supercurrent states in a superconductor-InAs/GaSb-superconductor junction
Superconductivity in topological materials has attracted a great deal of
interest in both electron physics and material sciences since the theoretical
predictions that Majorana fermions can be realized in topological
superconductors [1-4]. Topological superconductivity could be realized in a
type II, band-inverted, InAs/GaSb quantum well if it is in proximity to a
conventional superconductor. Here we report observations of the proximity
effect induced giant supercurrent states in an InAs/GaSb bilayer system that is
sandwiched between two superconducting tantalum electrodes to form a
superconductor-InAs/GaSb-superconductor junction. Electron transport results
show that the supercurrent states can be preserved in a surprisingly large
temperature-magnetic field (T-H) parameter space. In addition, the evolution of
differential resistance in T and H reveals an interesting superconducting gap
structure
Preparation, structural and magnetic characterization of trinuclear and one-dimensional cyanide-bridged Co(III)-Cu(II) complexes
341-345By employing two trans-dicyanocobolt(III) building blocks K[Co(bpb)(CN)2] (bpb2- = 1,2-bis(pyridine-2-carboxamido)benzenate), K[Co(bpmb)(CN)2] (bpmb2- = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate) and one 14-membered macrocycle Cu(II) compound as assembling segment, two cyanide-bridged CoIII-CuII complexes {{[Cu(cyclam)][Co(bpb)(CN)2]}ClO4}n·nCH3OH·nH2O (1) and {[Cu(cyclam)][Co(bpmb)(CN)2]2}·4H2O (2) (cyclam = 1,4,8,11-tetraazacyclotetradecane) have been successfully prepared and characterized by elemental analysis, IR spectroscopy and X-ray structure determination. Single X-ray diffraction analysis shows that complex 1 can be structurally characterized as one-dimensional cationic single chain consisting of alternating units of [Cu(cyclam)]2+ and [Co(bpb)(CN)2]- with free ClO4- as balanced anion, while complex 2 presents cyanide-bridged neutral trinuclear bimetallic structure containing Co2Cu core, giving clear information that the substitute group on the cyanide precursor has obvious influence on the structure type of the target compound. Investigation over magnetic properties of complex 1 reveals the weak antiferromagnetic coupling between the neighboring Cu(II) ions through the diamagnetic cyanide building block
PACE: A Pragmatic Agent for Enhancing Communication Efficiency Using Large Language Models
Current communication technologies face limitations in terms of theoretical
capacity, spectrum availability, and power resources. Pragmatic communication,
leveraging terminal intelligence for selective data transmission, offers
resource conservation. Existing research lacks universal intention resolution
tools, limiting applicability to specific tasks. This paper proposes an image
pragmatic communication framework based on a Pragmatic Agent for Communication
Efficiency (PACE) using Large Language Models (LLM). In this framework, PACE
sequentially performs semantic perception, intention resolution, and
intention-oriented coding. To ensure the effective utilization of LLM in
communication, a knowledge base is designed to supplement the necessary
knowledge, dedicated prompts are introduced to facilitate understanding of
pragmatic communication scenarios and task requirements, and a chain of thought
is designed to assist in making reasonable trade-offs between transmission
efficiency and cost. For experimental validation, this paper constructs an
image pragmatic communication dataset along with corresponding evaluation
standards. Simulation results indicate that the proposed method outperforms
traditional and non-LLM-based pragmatic communication in terms of transmission
efficiency.Comment: 11 pages,11 figures, submitted to IJCAI 202
- …