6 research outputs found

    Technologies for trapped-ion quantum information systems

    Get PDF
    Scaling-up from prototype systems to dense arrays of ions on chip, or vast networks of ions connected by photonic channels, will require developing entirely new technologies that combine miniaturized ion trapping systems with devices to capture, transmit and detect light, while refining how ions are confined and controlled. Building a cohesive ion system from such diverse parts involves many challenges, including navigating materials incompatibilities and undesired coupling between elements. Here, we review our recent efforts to create scalable ion systems incorporating unconventional materials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and trapping techniques.Comment: 19 pages, 18 figure

    Preventing and Reversing Vacuum-Induced Optical Losses in High-Finesse Tantalum (V) Oxide Mirror Coatings

    Get PDF
    We study the vacuum-induced degradation of high-finesse optical cavities with mirror coatings composed of SiO2_2-Ta2_{2}O5_{5} dielectric stacks, and present methods to protect these coatings and to recover their initial quality factor. For separate coatings with reflectivities centered at 370 nm and 422 nm, a vacuum-induced continuous increase in optical loss occurs if the surface-layer coating is made of Ta2_{2}O5_{5}, while it does not occur if it is made of SiO2_2. The incurred optical loss can be reversed by filling the vacuum chamber with oxygen at atmospheric pressure, and the recovery rate can be strongly accelerated by continuous laser illumination at 422 nm. Both the degradation and the recovery processes depend strongly on temperature. We find that a 1 nm-thick layer of SiO2_2 passivating the Ta2_{2}O5_{5} surface layer is sufficient to reduce the degradation rate by more than a factor of 10, strongly supporting surface oxygen depletion as the primary degradation mechanism.Comment: 14 pages, 7 figure

    A microfabricated surface ion trap on a high-finesse optical mirror

    Full text link
    A novel approach to optics integration in ion traps is demonstrated based on a surface electrode ion trap that is microfabricated on top of a dielectric mirror. Additional optical losses due to fabrication are found to be as low as 80 ppm for light at 422 nm. The integrated mirror is used to demonstrate light collection from, and imaging of, a single 88 Sr+ ion trapped 169±4μ169\pm4 \mum above the mirror.Comment: 4 pages, 3 figure

    Atomic and molecular ions with photon resonators for quantum information science

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2015.Cataloged from PDF version of thesis.Includes bibliographical references (pages 163-181).With continued development of laser-atom interaction, systems of trapped ions offer a promising platform for the realization of fault-tolerant quantum information processing (QIP). Much progress with single atomic and molecular ion qubits has been made both in theory and experiment on the fundamental building blocks for scalable QIP architectures. Nonetheless, difficulty still remains for quantum network implementation and spectroscopy protocols for atomic and molecular ions, respectively. The objective of this thesis is to design and test the ion trap integration with photon resonators, which can facilitate coherent ion-photon state transfer in quantum networks, and microwave spectroscopy for molecular ion rotational states. The first part of the thesis describes a novel planar trap design with an integrated optical cavity. Proposals for photon number memory with trapped ions are presented, and experimental implementation for single ion cavity QED is explored. In addition, a study of vacuum-induced scattering loss increase is performed for mirror coatings at several temperatures and wavelengths, from which a method of retaining cavity finesse was developed. In the second part, an experiment is proposed for microwave quantum logic spectroscopy of molecular ions. With a cavity field to facilitate entanglement between co-trapped single atomic and molecular ions, a reliable and non-destructive spectroscopy method, as well as molecular ground state cooling can be realized.by Molu Shi.Ph. D

    Factors Driving the Popularity and Virality of COVID-19 Vaccine Discourse on Twitter: Text Mining and Data Visualization Study

    No full text
    BackgroundCOVID-19 vaccination is considered a critical prevention measure to help end the pandemic. Social media platforms such as Twitter have played an important role in the public discussion about COVID-19 vaccines. ObjectiveThe aim of this study was to investigate message-level drivers of the popularity and virality of tweets about COVID-19 vaccines using machine-based text-mining techniques. We further aimed to examine the topic communities of the most liked and most retweeted tweets using network analysis and visualization. MethodsWe collected US-based English-language public tweets about COVID-19 vaccines from January 1, 2020, to April 30, 2021 (N=501,531). Topic modeling and sentiment analysis were used to identify latent topics and valence, which together with autoextracted information about media presence, linguistic features, and account verification were used in regression models to predict likes and retweets. Among the 2500 most liked tweets and 2500 most retweeted tweets, network analysis and visualization were used to detect topic communities and present the relationship between the topics and the tweets. ResultsTopic modeling yielded 12 topics. The regression analyses showed that 8 topics positively predicted likes and 7 topics positively predicted retweets, among which the topic of vaccine development and people’s views and that of vaccine efficacy and rollout had relatively larger effects. Network analysis and visualization revealed that the 2500 most liked and most retweeted retweets clustered around the topics of vaccine access, vaccine efficacy and rollout, vaccine development and people’s views, and vaccination status. The overall valence of the tweets was positive. Positive valence increased likes, but valence did not affect retweets. Media (photo, video, gif) presence and account verification increased likes and retweets. Linguistic features had mixed effects on likes and retweets. ConclusionsThis study suggests the public interest in and demand for information about vaccine development and people’s views, and about vaccine efficacy and rollout. These topics, along with the use of media and verified accounts, have enhanced the popularity and virality of tweets. These topics could be addressed in vaccine campaigns to help the diffusion of content on Twitter
    corecore