165 research outputs found

    Adversarial Feature Stacking for Accurate and Robust Predictions

    Full text link
    Deep Neural Networks (DNNs) have achieved remarkable performance on a variety of applications but are extremely vulnerable to adversarial perturbation. To address this issue, various defense methods have been proposed to enhance model robustness. Unfortunately, the most representative and promising methods, such as adversarial training and its variants, usually degrade model accuracy on benign samples, limiting practical utility. This indicates that it is difficult to extract both robust and accurate features using a single network under certain conditions, such as limited training data, resulting in a trade-off between accuracy and robustness. To tackle this problem, we propose an Adversarial Feature Stacking (AFS) model that can jointly take advantage of features with varied levels of robustness and accuracy, thus significantly alleviating the aforementioned trade-off. Specifically, we adopt multiple networks adversarially trained with different perturbation budgets to extract either more robust features or more accurate features. These features are then fused by a learnable merger to give final predictions. We evaluate the AFS model on CIFAR-10 and CIFAR-100 datasets with strong adaptive attack methods, which significantly advances the state-of-the-art in terms of the trade-off. Without extra training data, the AFS model achieves a benign accuracy improvement of 6% on CIFAR-10 and 9% on CIFAR-100 with comparable or even stronger robustness than the state-of-the-art adversarial training methods. This work demonstrates the feasibility to obtain both accurate and robust models under the circumstances of limited training data

    OPML: A One-Pass Closed-Form Solution for Online Metric Learning

    Get PDF
    To achieve a low computational cost when performing online metric learning for large-scale data, we present a one-pass closed-form solution namely OPML in this paper. Typically, the proposed OPML first adopts a one-pass triplet construction strategy, which aims to use only a very small number of triplets to approximate the representation ability of whole original triplets obtained by batch-manner methods. Then, OPML employs a closed-form solution to update the metric for new coming samples, which leads to a low space (i.e., O(d)O(d)) and time (i.e., O(d2)O(d^2)) complexity, where dd is the feature dimensionality. In addition, an extension of OPML (namely COPML) is further proposed to enhance the robustness when in real case the first several samples come from the same class (i.e., cold start problem). In the experiments, we have systematically evaluated our methods (OPML and COPML) on three typical tasks, including UCI data classification, face verification, and abnormal event detection in videos, which aims to fully evaluate the proposed methods on different sample number, different feature dimensionalities and different feature extraction ways (i.e., hand-crafted and deeply-learned). The results show that OPML and COPML can obtain the promising performance with a very low computational cost. Also, the effectiveness of COPML under the cold start setting is experimentally verified.Comment: 12 page

    A Novel Unsupervised Camera-aware Domain Adaptation Framework for Person Re-identification

    Full text link
    Unsupervised cross-domain person re-identification (Re-ID) faces two key issues. One is the data distribution discrepancy between source and target domains, and the other is the lack of labelling information in target domain. They are addressed in this paper from the perspective of representation learning. For the first issue, we highlight the presence of camera-level sub-domains as a unique characteristic of person Re-ID, and develop camera-aware domain adaptation to reduce the discrepancy not only between source and target domains but also across these sub-domains. For the second issue, we exploit the temporal continuity in each camera of target domain to create discriminative information. This is implemented by dynamically generating online triplets within each batch, in order to maximally take advantage of the steadily improved feature representation in training process. Together, the above two methods give rise to a novel unsupervised deep domain adaptation framework for person Re-ID. Experiments and ablation studies on benchmark datasets demonstrate its superiority and interesting properties.Comment: Accepted by ICCV201
    • …
    corecore