10,884 research outputs found

    Multi-modal shear wave de-icing using fibre piezoelectric actuator on composite for aircraft wings

    Get PDF
    The formation and accretion of ice on aircraft wings during flight can be potentially disastrous and existing in-flight deicing methods are either bulky or power consuming. This paper investigates the use of shear wave deicing driven by a macro fibre piezoelectric composite actuator on a composite plate typically used for aircraft wings. While the few existing research on this novel deicing approach focused on either theoretical studies or single frequency mode optimization that required high-excitation amplitudes, this study revealed that the use of multimodal excitation through broadband frequency sweeps has the potential to promote the chance of shear stress induced deicing at a relatively small excitation amplitude. The results reported here form the foundation for a pathway towards low power and lightweight deicing mechanism for in-flight aircraft wings

    An analytical and numerical study of magnetic spring suspension and energy recovery mechanism

    Get PDF
    As the automotive paradigm shifts towards electric, limited range remains a key challenge. Increasing the battery size adds weight, which yields diminishing returns in range per kilowatt-hour. Therefore, energy recovery systems, such as regenerative braking and photovoltaic cells, are desirable to recharge the onboard batteries in between hub charge cycles. While some reports of regenerative suspension do exist, they all harvest energy in a parasitic manner, and the predicted power output is extremely low, since the majority of the energy is still dissipated to the environment by the suspension. This paper proposes a fundamental suspension redesign using a magnetically-levitated spring mechanism and aims to increase the recoverable energy significantly by directly coupling an electromagnetic transducer as the main damper. Furthermore, the highly nonlinear magnetic restoring force can also potentially enhance rider comfort. Analytical and numerical models have been constructed. Road roughness data from an Australian road were used to numerically simulate a representative environment response. Simulation suggests that 10’s of kW to >100 kW can theoretically be generated by a medium-sized car travelling on a typical paved road (about 2–3 orders of magnitude higher than literature reports on parasitic regenerative suspension schemes), while still maintaining well below the discomfort threshold for passengers (<0.315 m/s 2 on average)

    Parametric Study of Environmental Conditions on The Energy Harvesting Efficiency for The Multifunctional Composite Structures

    Get PDF
    This paper presents a parametric study of the efficacy of an integrated vibration energy harvesting device under the environmental condition representative of an offshore wind turbine. A multifunctional glass fibre composite with an integrated Micro Fibre Composite (MFC) energy harvesting device was tested by swept sine vibration under environmental conditions that ranged from – 40°C to 70°C in temperature and 10%RH to 90%RH in humidity in order to characterise the sensitivity and dependence of energy harvesting on environmental conditions. Experimental vibration testing was complemented with theoretical analysis to investigate the relative contributions to the temperature dependence of energy harvesting. This included mechanical properties of the stiffness and strength of the cantilever structure and the electrical properties of the MFC transducer, including its dielectric constants and charge coefficients. An inverse proportionality was observed between the magnitude of harvested energy and the climatic temperature. The efficiency of energy harvesting was dominated by the stiffness of the cantilever, which displayed viscoelastic temperature dependence. The sample was also tested with a vibration profile obtained from a wind turbine in order to validate the temperature influence under typical service conditions. Numerical modal analysis was used to determine the shapes of resonance modes, the frequencies of which were temperature dependent. Humidity was observed to have a secondary influence on energy harvesting, with no significant short-term effect on the structural properties of the samples within the limits of the experimental method

    Ohmic dissipation during the formation of super-Earth

    Full text link
    Super-Earth population, as one of the representatives of exoplanets, plays an important role in constraining the planet formation theories. According to the prediction from core-accretion models, super-Earths should be rare because their masses are in the range of the critical mass above which they would grow to be gas giants by runaway gas accretion. In this work, we investigate the effect of ohmic dissipation on the planetary thermal structure and cooling contraction as planets accrete gas from their surrounding disks. We find that the extra heating energy from Ohmic heating deposited into planetary envelopes can push the planetary radiative-convective boundaries inward and prevent the planets from cooling, and can even halt accretion. We explore parameter space to study the dependence of cooling timescale on the input parameters of the ohmic-dissipation model. Numerical results show that gas accretion can be halted before runaway gas accretion and the envelope mass is only several percent of planetary core mass for some parameter sets. Our results suggest that ohmic dissipation is a potential mechanism to delay the gas accretion and promote the formation of super-Earths. Future observations may help to constrain the importance of ohmic dissipation on the super-Earth formation.Comment: ApJ in pres

    New insights from GWAS for the cleft palate among han Chinese population

    Get PDF
    Genome wide association studies (GWAS) already have identified tens of susceptible loci for nonsyndromic cleft lip with or without cleft palate (NSCL/P). However, whether these loci associated with nonsyndromic cleft palate only (NSCPO) remains unknown. In this study, we replicated 38 SNPs (Single nucleotide polymorphisms) which has the most significant p values in published GWASs, genotyping by using SNPscan among 144 NSCPO trios from Western Han Chinese. We performed the transmission disequilibrium test (TDT) on individual SNPs and gene-gene (GxG) interaction analyses on the family data; Parent-of-Origin effects were assessed by separately considering transmissions from heterozygous fathers versus heterozygous mothers to affected offspring. Allelic TDT results showed that T allele at rs742071 (PAX7) (p=0.025, ORtransmission=3.00, 95%CI: 1.09-8.25) and G allele at rs2485893 (10kb 3? of SYT14) were associated with NSCPO (p=0.0036, ORtransmission= 0.60, 95%CI: 0.42-0.85). Genotypic TDT based on 3 pseudo controls further confirmed that rs742071 (p-value=0.03, ORtransmission=3.00, 95%CI: 1.09-8.25) and rs2485893 were associated with NSCPO under additive model (p-value= 0.02, ORtransmission= 0.66, 95%CI: 0.47-0.92). Genotypic TDT for epistatic interactions showed that rs4844913 (37kb 3? of DIEXF) interacted with rs11119388 (SYT14) (p-value=1.80E-08) and rs6072081 (53kb 3? of MAFB) interacted with rs6102085 (33kb 3? of MAFB) (p-value=3.60E-04) for NSCPO, suggesting they may act in the same pathway in the etiology of NSCPO. In this study, we found that rs742071 and rs2485893 were associated NSCPO from Han Chinese population; also, interactions of rs4844913:rs11119388 and rs6072081:rs6102085 for NSCPO were identified, gene-gene interactions have been proposed as a potential source of the remaining heritability, these findings provided new insights of the previous GWAS

    A High Isolation Series-Shunt RF MEMS Switch

    Get PDF
    This paper presents a wide band compact high isolation microelectromechanical systems (MEMS) switch implemented on a coplanar waveguide (CPW) with three ohmic switch cells, which is based on the series-shunt switch design. The ohmic switch shows a low intrinsic loss of 0.1 dB and an isolation of 24.8 dB at 6 GHz. The measured average pull-in voltage is 28 V and switching time is 47 μs. In order to shorten design period of the high isolation switch, a structure-based small-signal model for the 3-port ohmic MEMS switch is developed and parameters are extracted from the measured results. Then a high isolation switch has been developed where each 3-port ohmic MEMS switch is closely located. The agreement of the measured and modeled radio frequency (RF) performance demonstrates the validity of the electrical equivalent model. Measurements of the series-shunt switch indicate an outstanding isolation of more than 40 dB and a low insertion loss of 0.35 dB from DC to 12 GHz with total chip size of 1 mm × 1.2 mm

    Effects of Maillard-type caseinate glycation on the preventive action of caseinate digests in acrylamide-induced intestinal barrier dysfunction in IEC-6 cells

    Get PDF
    Dietary acrylamide has attracted widespread concern due to its toxic effects; however, its adverse impact on the intestines is less assessed. Protein glycation of the Maillard-type is widely used for property modification, but its potential effect on preventive efficacy of protein digest against the acrylamide-induced intestinal barrier dysfunction is quite unknown. Caseinate was thus glycated with lactose. Two tryptic digests from the glycated caseinate and untreated caseinate (namely GCN digest and CN digest) were then assessed for their protective effects against acrylamide-induced intestinal barrier dysfunction in the IEC-6 cell model. The results showed that acrylamide at 1.25–10 mmol L(−1) dose-dependently had cytotoxic effects on IEC-6 cells, leading to decreased cell viability and increased lactate dehydrogenase release. Acrylamide also brought about barrier dysfunction, including decreased trans-epithelial electrical resistance (TEER) value and increased epithelial permeability. However, the two digests at 12.5–100 μg mL(−1) could alleviate this dysfunction via enhancing cell viability by 70.2–83.9%, partly restoring TEER values, and decreasing epithelial permeability from 100% to 76.6–94.1%. The two digests at 25 μg mL(−1) strengthened the tight junctions via increasing tight junction proteins ZO-1, occludin, and claudin-1 expression by 11.5–68.6%. However, the results also suggested that the GCN digest always showed lower protective efficacy than the CN digest in the cells. It is concluded that Maillard-type caseinate glycation with lactose endows the resultant tryptic digest with impaired preventive effect against acrylamide-induced intestinal barrier dysfunction, highlighting another adverse effect of the Maillard reaction on food proteins
    • …
    corecore