17 research outputs found

    Auto-Generation System Based on Fractal Geometry for Batik Pattern Design

    No full text
    In order to obtain the automatic simulation generation of traditional handmade batik patterns in a computer, this paper proposes the automatic generation method of batik flower patterns based on fractal geometry. Firstly, we analyze the fractal characteristics of batik flowers and design an automatic flower generation algorithm based on a two-dimensional iterated function system (IFS) and a curve function. The algorithm forms a complete flower pattern. Secondly, a nonlinear function is defined and the flower pattern is introduced into the nonlinear function to iterate and change. On this basis, we present an automatic generation method of different distribution patterns for flower patterns which obtains the most effective range of each parameter value for each function. Finally, in order to verify the feasibility of the automatic generation method of batik flower patterns, we develop an automatic generation experiment system for batik patterns via an interactive way of working. The results show that the user or designer can quickly and automatically simulate a series of flower patterns by changing the relevant parameter values, realizing the digitization and innovative design of the pattern and enriching the batik pattern base

    Purified exosome product enhances chondrocyte survival and regeneration by modulating inflammation and promoting chondrogenesis

    No full text
    Aim: This study was to detect the effects of purified exosome product (PEP) on C28/I2 cells and chondrocytes derived from osteoarthritis patients. Materials &amp; methods: Cell viability and apoptosis assays were used to detect the effect of PEP on cells. qRT-PCR and cell fluorescence assays were used to investigate the potential mechanism of PEP on cell chondrogenesis. Results: PEP was internalized by cells at a fast rate and enhanced cellular proliferation and migration while attenuating apoptosis. These findings reflect the fact that PEP can increase the expression of PCNA and reduce the expression of CASP3/7/9 and BAX. Conclusion: This study suggests an innovative strategy for chondrogenesis that could be applied to osteoarthritis repair in the future.</p

    CircRNA CDR1as affects functional repair after spinal cord injury and regulates fibrosis through the SMAD pathway

    No full text
    Spinal cord injury (SCI) is a complex problem in modern medicine. Fibroblast activation and fibroscarring after SCI impede nerve recovery. Non-coding RNA plays an important role in the progression of many diseases, but the study of its role in the progression of spinal fibrosis is still emerging. Here, we investigated the function of circular RNAs, specifically antisense to the cerebellar degeneration-related protein 1 (CDR1as), in spinal fibrosis and characterized its molecular mechanism and pathophysiology. The presence of CDR1as in the spinal cord was verified by sequencing and RNA expression assays. The effects of inhibition of CDR1as on scar formation, inflammation and nerve regeneration after spinal cord injury were investigated in vivo and in vitro. Further, gene expression of miR-7a-5p and protein expression of transforming Growth Factor Beta Receptor II (TGF-βR2) were measured to evaluate their predicted interactions with CDR1as. The regulatory effects and activation pathways were subsequently verified by miR-7a-5p inhibitor and siCDR1as. These results indicate that CDR1as/miR-7a-5p/TGF-βR2 interactions may exert scars and nerves functions and suggest potential therapeutic targets for treating spinal fibrotic diseases
    corecore