852 research outputs found
The UNC-Wisconsin rhesus macaque neurodevelopment database: A structural MRI and DTI database of early postnatal development
Rhesus macaques are commonly used as a translational animal model in neuroimaging and neurodevelopmental research. In this report, we present longitudinal data from both structural and diffusion MRI images generated on a cohort of 34 typically developing monkeys from 2 weeks to 36 months of age. All images have been manually skull stripped and are being made freely available via an online repository for use by the research community
On the magnetic stability at the surface in strongly correlated electron systems
The stability of ferromagnetism at the surface at finite temperatures is
investigated within the strongly correlated Hubbard model on a semi-infinite
lattice. Due to the reduced surface coordination number the effective Coulomb
correlation is enhanced at the surface compared to the bulk. Therefore, within
the well-known Stoner-picture of band ferromagnetism one would expect the
magnetic stability at the surface to be enhanced as well. However, by taking
electron correlations into account well beyond the Hartree-Fock (Stoner) level
we find the opposite behavior: As a function of temperature the magnetization
of the surface layer decreases faster than in the bulk. By varying the hopping
integral within the surface layer this behavior becomes even more pronounced. A
reduced hopping integral at the surface tends to destabilize surface
ferromagnetism whereas the magnetic stability gets enhanced by an increased
hopping integral. This behavior represents a pure correlation effect and can be
understood in terms of general arguments which are based on exact results in
the limit of strong Coulomb interaction.Comment: 6 pages, RevTeX, 4 eps figures, accepted (Phys. Rev. B), for related
work and info see http://orion.physik.hu-berlin.d
Magnetotransport in two-dimensional electron gas at large filling factors
We derive the quantum Boltzmann equation for the two-dimensional electron gas
in a magnetic field such that the filling factor . This equation
describes all of the effects of the external fields on the impurity collision
integral including Shubnikov-de Haas oscillations, smooth part of the
magnetoresistance, and non-linear transport. Furthemore, we obtain quantitative
results for the effect of the external microwave radiation on the linear and
non-linear transport in the system. Our findings are relevant for the
description of the oscillating resistivity discovered by Zudov {\em et al.},
zero-resistance state discovered by Mani {\em et al.} and Zudov {\em et al.},
and for the microscopic justification of the model of Andreev {\em et al.}. We
also present semiclassical picture for the qualitative consideration of the
effects of the applied field on the collision integral.Comment: 28 pages, 19 figures; The discussion of the role of the effect of the
microwave field on the distribution function is revised (see also
cond-mat/0310668). Accepted in Phys. Rev.
Evolution and Flare Activity of Delta-Sunspots in Cycle 23
The emergence and magnetic evolution of solar active regions (ARs) of
beta-gamma-delta type, which are known to be highly flare-productive, were
studied with the SOHO/MDI data in Cycle 23. We selected 31 ARs that can be
observed from their birth phase, as unbiased samples for our study. From the
analysis of the magnetic topology (twist and writhe), we obtained the following
results. i) Emerging beta-gamma-delta ARs can be classified into three
topological types as "quasi-beta", "writhed" and "top-to-top". ii) Among them,
the "writhed" and "top-to-top" types tend to show high flare activity. iii) As
the signs of twist and writhe agree with each other in most cases of the
"writhed" type (12 cases out of 13), we propose a magnetic model in which the
emerging flux regions in a beta-gamma-delta AR are not separated but united as
a single structure below the solar surface. iv) Almost all the "writhed"-type
ARs have downward knotted structures in the mid portion of the magnetic flux
tube. This, we believe, is the essential property of beta-gamma-delta ARs. v)
The flare activity of beta-gamma-delta ARs is highly correlated not only with
the sunspot area but also with the magnetic complexity. vi) We suggest that
there is a possible scaling-law between the flare index and the maximum umbral
area
Magnetic Field Amplification in Galaxy Clusters and its Simulation
We review the present theoretical and numerical understanding of magnetic
field amplification in cosmic large-scale structure, on length scales of galaxy
clusters and beyond. Structure formation drives compression and turbulence,
which amplify tiny magnetic seed fields to the microGauss values that are
observed in the intracluster medium. This process is intimately connected to
the properties of turbulence and the microphysics of the intra-cluster medium.
Additional roles are played by merger induced shocks that sweep through the
intra-cluster medium and motions induced by sloshing cool cores. The accurate
simulation of magnetic field amplification in clusters still poses a serious
challenge for simulations of cosmological structure formation. We review the
current literature on cosmological simulations that include magnetic fields and
outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
BESII Detector Simulation
A Monte Carlo program based on Geant3 has been developed for BESII detector
simulation. The organization of the program is outlined, and the digitization
procedure for simulating the response of various sub-detectors is described.
Comparisons with data show that the performance of the program is generally
satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM
Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar
The branching ratios and Angular distributions for J/psi decays to Lambda
Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure
Direct Measurements of the Branching Fractions for and and Determinations of the Form Factors and
The absolute branching fractions for the decays and
are determined using singly
tagged sample from the data collected around 3.773 GeV with the
BES-II detector at the BEPC. In the system recoiling against the singly tagged
meson, events for and events for decays are observed. Those yield
the absolute branching fractions to be and . The
vector form factors are determined to be
and . The ratio of the two form
factors is measured to be .Comment: 6 pages, 5 figure
- …