13 research outputs found

    Anisotropic magnetic properties and tunable conductivity in two-dimensional layered NaCrX2 (X=Te,Se,S) single crystals

    Full text link
    Monolayer NaCrX2 (X=Te,Se,S) were theoretically proposed to be two-dimensional intrinsic ferromagnetic semiconductors while their physical properties have not been thoroughly investigated in bulk single crystals. We report the single-crystal growth, structural, magnetic and electronic transport properties of NaCr(Te1-xSex)2 (0 6 x 6 1) and NaCrS2. For NaCr(Te1-xSex)2, the strong perpendicular magnetic anisotropy of NaCrTe2 can be gradually tuned to be a nearly isotropic one by Se-doping. Meanwhile, a systematic change in the conductivity with increasing x is observed, displaying a doping-induced metal-insulator-like transition. Under magnetic field larger than 30 koe, both NaCrTe2 and NaCrSe2 can be polarized to a ferromagnetic state. While for NaCrS2, robust antiferromagnetism is observed up to 70 kOe and two field-induced metamagnetic transitions are identified along H||ab. These intriguing properties together with the potential to be exfoliated down to few-layer thickness make NaCrX2 (X=Te,Se,S) promising for exploring spintronic applications

    A selective up-sampling method applied upon unbalanced data for flare prediction: potential to improve model performance

    Get PDF
    The Spaceweather HMI Active Region Patch (SHARP) parameters have been widely used to develop flare prediction models. The relatively small number of strong-flare events leads to an unbalanced dataset that prediction models can be sensitive to the unbalanced data and might lead to bias and limited performance. In this study, we adopted the logistic regression algorithm to develop a flare prediction model for the next 48 h based on the SHARP parameters. The model was trained with five different inputs. The first input was the original unbalanced dataset; the second and third inputs were obtained by using two widely used sampling methods from the original dataset, while the fourth input was the original dataset but accompanied by a weighted classifier. Based on the distribution properties of strong-flare occurrences related to SHARP parameters, we established a new selective up-sampling method and applied it to the mixed-up region (referred to as the confusing distribution areas consisting of both the strong-flare events and non-strong-flare events) to pick up the flare-related samples and add small random values to them and finally create a large number of flare-related samples that are very close to the ground truth. Thus, we obtained the fifth balanced dataset aiming to 1) promote the forecast capability in the mixed-up region and 2) increase the robustness of the model. We compared the model performance and found that the selective up-sampling method has potential to improve the model performance in strong-flare prediction with its F1 score reaching 0.5501 ± 0.1200, which is approximately 22% − 33% higher than other imbalance mitigation schemes

    Distributed LQR Consensus Control for Heterogeneous Multiagent Systems: Theory and Experiments

    No full text

    Event-Triggered Consensus Control for Multiagent Systems With Time-Varying Communication and Event-Detecting Delays

    No full text

    A Multi-Scale Study on Deformation and Failure Process of Metallic Structures in Extreme Environment

    No full text
    It is a macro-micro model study for defect initiation, growth and crack propagation of metallic truss structure under high engine temperature and pressure conditions during the reentry atmosphere. Till now, the multi-scale simulation methods for these processes are still unclear. We explore the deformation and failure processes from macroscale to nanoscale using the Gas-Kinetic Unified Algorithm (GKUA) and all-atomic, molecular dynamic (MD) simulation method. The behaviors of the dislocations, defect evolution and crack propagation until failure for Aluminum-Magnesium (Al-Mg) alloy are considered with the different temperature background and strain fields. The results of distributions of temperature and strain field in the aerodynamic environment obtained by molecular dynamics simulations are in good agreement with those obtained from the macroscopic Boltzmann method. Compared to the tensile loading, the alloy structure is more sensitive to compression loading. The polycrystalline Al-Mg alloy has higher yield strength with a larger grain size. It is due to the translation of plastic deformation mode from grain boundary (GB) sliding to dislocation slip and the accumulation of dislocation line. Our findings have paved a new way to analyze and predict the metallic structural failure by micro-scale analysis under the aerodynamic thermal extreme environment of the reentry spacecraft on service expiration

    Modeling the Relationship of ≥2 MeV Electron Fluxes at Different Longitudes in Geostationary Orbit by the Machine Learning Method

    No full text
    The energetic electrons in the Earth’s radiation belt, known as “killer electrons”, are one of the crucial factors for the safety of geostationary satellites. Geostationary satellites at different longitudes encounter different energetic electron environments. However, organizations of space weather prediction usually only display the real-time ≥2 MeV electron fluxes and the predictions of ≥2 MeV electron fluxes or daily fluences within the next 1–3 days by models at one location in GEO orbit. In this study, the relationship of ≥2 MeV electron fluxes at different longitudes is investigated based on observations from GOES satellites, and the relevant models are developed. Based on the observations from GOES-10 and GOES-12 after calibration verification, the ratios of the ≥2 MeV electron daily fluences at 135° W to those at 75° W are mainly in the range from 1.0 to 4.0, with an average of 1.92. The models with various combinations of two or three input parameters are developed by the fully connected neural network for the relationship between ≥2 MeV electron fluxes at 135° W and 75° W in GEO orbit. According to the prediction efficiency (PE), the model only using log10 (fluxes) and MLT from GOES-10 (135° W), whose PE can reach 0.920, has the best performance to predict ≥2 MeV electron fluxes at the locations of GOES-12 (75° W). Its PE is larger than that (0.882) of the linear model using log10 (fluxes four hours ahead) from GOES-10 (135° W). We also develop models for the relationship between ≥2 MeV electron fluxes at 75° W and at variable longitudes between 95.8° W and 114.9° W in GEO orbit by the fully connected neural network. The PE values of these models are larger than 0.90. These models realize the predictions of ≥2 MeV electron fluxes at arbitrary longitude between 95.8° W and 114.9° W in GEO orbit
    corecore