98,039 research outputs found

    CP Measurement in Quantum Teleportation of Neutral Mesons

    Full text link
    Quantum teleportation using neutral pseudoscalar mesons shows novel connections between particle physics and quantum information. The projection basis, which is crucial in the teleportation process, is determined by the conservation laws of particle physics, and is different from the Bell basis, as in the usual case. Here we show that one can verify the teleportation process by CP measurement. This method significantly simplifies the high energy quantum teleportation protocol. Especially, it is rigorous, and is independent of whether CP is violated in weak decays. This method can also be applied to general verification of Einstein-Podolsky-Rosen correlations in particle physics.Comment: 7 page

    Coexistence of strong nematic and superconducting correlations in a two-dimensional Hubbard model

    Full text link
    Using a dynamic cluster quantum Monte Carlo approximation, we study a two-dimensional Hubbard model with a small orthorhombic distortion in the nearest neighbor hopping integrals. We find a large nematic response in the low-frequency single-particle scattering rate which develops with decreasing temperature and doping as the pseudogap region is entered. At the same time, the d-wave superconducting gap function develops an s-wave component and its amplitude becomes anisotropic. The strength of the pairing correlations, however, is found to be unaffected by the strong anisotropy, indicating that d-wave superconductivity can coexist with strong nematicity in the system.Comment: 4 pages, 4 figures, published as PRB 84, 220506(R) (2011

    Superconducting properties of Gd-Ba-Cu-O single grains processed from a new, Ba-rich precursor compound

    Get PDF
    Gd-Ba-Cu-O (GdBCO) single grains have been previously melt-processed successfully in air using a generic Mg-Nd-Ba-Cu-O (Mg-NdBCO) seed crystal. Previous research has revealed that the addition of a small amount of BaO2 to the precursor powders prior to melt processing can suppress the formation of Gd/Ba solid solution, and lead to a significant improvement in superconducting properties of the single grains. Research into the effects of a higher Ba content on single grain growth, however, has been limited by the relatively small grain size in the earlier studies. This has been addressed by developing Ba-rich precursor compounds Gd-163 and Gd-143, fabricated specifically to enable the presence of greater concentrations of Ba during the melt process. In this study, we propose a new processing route for the fabrication of high performance GdBCO single grain bulk superconductors in air by enriching the precursor powder with these new Ba rich compounds. The influence of the addition of the new compounds on the microstructures and superconducting properties of GdBCO single grains is reported

    Manifestation of a nonclassical Berry phase of an electromagnetic field in atomic Ramsey interference

    Full text link
    The Berry phase acquired by an electromagnetic field undergoing an adiabatic and cyclic evolution in phase space is a purely quantum-mechanical effect of the field. However, this phase is usually accompanied by a dynamical contribution and cannot be manifested in any light-beam interference experiment because it is independent of the field state. We here show that such a phase can be produced using an atom coupled to a quantized field and driven by a slowly changing classical field, and it is manifested in atomic Ramsey interference oscillations. We also show how this effect may be applied to one-step implementation of multiqubit geometric phase gates, which is impossible by previous geometric methods. The effects of dissipation and fluctuations in the parameters of the pump field on the Berry phase and visibility of the Ramsey interference fringes are analyzed
    • …
    corecore