40 research outputs found

    Symmetry Energy in the Equation of State of Asymmetric Nuclear Matte

    Full text link
    The symmetry energy is an important quantity in the equation of state of isospin asymmetric nuclear matter. This currently unknown quantity is key to understanding the structure of systems as diverse as the neutron-rich nuclei and neutron stars. At TAMU, we have carried out studies, aimed at understanding the symmetry energy, in a variety of reactions such as, the multifragmentation of 40^{40}Ar, 40^{40}Ca + 58^{58}Fe, 58^{58}Ni and 58^{58}Ni, 58^{58}Fe + 58^{58}Ni, 58^{58}Fe reactions at 25 - 53 AMeV, and deep-inelastic reactions of 86^{86}Kr + 124,112^{124,112}Sn, 64,58^{64,58}Ni (25 AMeV), 64^{64}Ni + 64,58^{64,58}Ni, 112,124^{112,124}Sn, 232^{232}Th, 208^{208}Pb (25 AMeV) and 136^{136}Xe + 64,58^{64,58}Ni, 112,124^{112,124}Sn, 232^{232}Th, 197^{197}Au (20 AMeV). Here we present an overview of some of the results obtained from these studies. The results are analyzed within the framework of statistical and dynamical models, and have important implications for future experiments using beams of neutron-rich nuclei.Comment: 10 pages, 4 figures, talk presented at VI Latin American Symposium on Nuclear Physics and Application

    Effective nucleon mass and the nuclear caloric curve

    Get PDF
    Assuming a schematic form of the nucleon effective mass as a function of nuclear excitation energy and mass, we provide a simple explanation for understanding the experimentally observed mass dependence of the nuclear caloric curve. It is observed that the excitation energy at which the caloric curve enters into a plateau region, could be sensitive to the nuclear mass evolution of the effective nucleon mass.Comment: 5 pages, 5 figures, Accepted for publication in Phys. Rev. C. Minor changes mad

    Density dependence of the symmetry energy and the nuclear equation of state: A dynamical and statistical model perspective

    Get PDF
    The density dependence of the symmetry energy in the equation of state of isospin asymmetric nuclear matter is of significant importance for studying the structure of systems as diverse as the neutron-rich nuclei and the neutron stars. A number of reactions using the dynamical and the statistical models of multifragmentation, and the experimental isoscaling observable, is studied to extract information on the density dependence of the symmetry energy. It is observed that the dynamical and the statistical model calculations give consistent results assuming the sequential decay effect in dynamical model to be small. A comparison with several other independent studies is also made to obtain important constraint on the form of the density dependence of the symmetry energy. The comparison rules out an extremely " stiff " and " soft " form of the density dependence of the symmetry energy with important implications for astrophysical and nuclear physics studies.Comment: 16 pages, 14 figure

    Tracing the evolution of the symmetry energy of hot nuclear fragments from the compound nucleus towards multifragmentation

    Get PDF
    The evolution of the symmetry energy coefficient of the binding energy of hot fragments with increasing excitation is explored in multifragmentation processes following heavy-ion collisions below the Fermi energy. In this work, high-resolution mass spectrometric data on isotopic distributions of projectile-like fragments from collisions of 25 MeV/nucleon 86Kr and 64Ni beams on heavy neutron-rich targets are systematically compared to calculations involving the Statistical Multifragmentation Model. The study reveals a gradual decrease of the symmetry energy coefficient from 25 MeV at the compound nucleus regime (E*/A < 2 MeV) towards 15 MeV in the bulk multifragmentation regime (E*/A > 4 MeV). The ensuing isotopic distributions of the hot fragments are found to be very wide and extend towards the neutron drip-line. These findings may have important implications to the composition and evolution of hot astrophysical environments, such as core-collapse supernova.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Heavy Residue Isoscaling as a Probe of the Symmetry Energy of Hot Fragments

    Get PDF
    The isoscaling properties of isotopically resolved projectile residues from peripheral collisions of 86Kr (25 MeV/nucleon), 64Ni (25 MeV/nucleon) and 136Xe (20 MeV/nucleon) beams on various target pairs are employed to probe the symmetry energy coefficient of the nuclear binding energy. The present study focuses on heavy projectile fragments produced in peripheral and semiperipheral collisions near the onset of multifragment emission E*/A = 2-3 MeV). For these fragments, the measured average velocities are used to extract excitation energies. The excitation energies, in turn, are used to estimate the temperatures of the fragmenting quasiprojectiles in the framework the Fermi gas model. The isoscaling analysis of the fragment yields provided the isoscaling parameters "alpha" which, in combination with temperatures and isospin asymmetries provided the symmetry energy coefficient of the nuclear binding energy of the hot fragmenting quasiprojectiles. The extracted values of the symmetry energy coefficient at this excitation energy range (2-3 MeV/nucleon) are lower than the typical liquid-drop model value ~25 MeV corresponding to ground-state nuclei and show a monotonic decrease with increasing excitation energy. This result is of importance in the formation of hot nuclei in heavy-ion reactions and in hot stellar environments such as supernova.Comment: 11 pages, 9 figures, submitted to Phys. Rev.

    The decay time scale for highly excited nuclei as seen from asymmetrical emission of particles

    Full text link
    A novel method was developed for the extraction of short emission times of light particles from the projectile-like fragments in peripheral deep-inelastic collisions in the Fermi energy domain. We have taken an advantage of the fact that in the external Coulomb field particles are evaporated asymmetrically. It was possible to determine the emission times in the interval 50-500 fm/c using the backward emission anisotropy of alpha-particles relative to the largest residue, in the reaction 28Si + 112Sn at 50 MeV/nucleon. The extracted times are consistent with predictions based on the evaporation decay widths calculated with the statistical evaporation model generalized for the case of the Coulomb interaction with the target.Comment: 13 pages, 5 figures, submitted to Phys. Lett.
    corecore