13 research outputs found

    The hydrodynamic footprint of a benthic, sedentary fish in unidirectional flow

    Get PDF
    Author Posting. © Acoustical Society of America, 2007. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 122 (2007): 1227-1237, doi:10.1121/1.2749455.Mottled sculpin (Cottus bairdi) are small, benthic fish that avoid being swept downstream by orienting their bodies upstream and extending their large pectoral fins laterally to generate negative lift. Digital particle image velocimetry was used to determine the effects of these behaviors on the spatial and temporal characteristics of the near-body flow field as a function of current velocity. Flow around the fish's head was typical for that around the leading end of a rigid body. Flow separated around the edges of pectoral fin, forming a wake similar to that observed for a flat plate perpendicular to the flow. A recirculation region formed behind the pectoral fin and extended caudally along the trunk to the approximate position of the caudal peduncle. In this region, the time-averaged velocity was approximately one order of magnitude lower than that in the freestream region and flow direction varied over time, resembling the periodic shedding of vortices from the edge of a flat plate. These results show that the mottled sculpin pectoral fin significantly alters the ambient flow noise in the vicinity of trunk lateral line sensors, while simultaneously creating a hydrodynamic footprint of the fish's presence that may be detected by the lateral line of nearby fish.This work was funded in part by an NIDCD program project grant to the Parmly Hearing Institute, Loyola University Chicago (W. Yost, PI, S. Coombs, Co-PI)

    Distant touch hydrodynamic imaging with an artificial lateral line

    No full text
    Nearly all underwater vehicles and surface ships today use sonar and vision for imaging and navigation. However, sonar and vision systems face various limitations, e.g., sonar blind zones, dark or murky environments, etc. Evolved over millions of years, fish use the lateral line, a distributed linear array of flow sensing organs, for underwater hydrodynamic imaging and information extraction. We demonstrate here a proof-of-concept artificial lateral line system. It enables a distant touch hydrodynamic imaging capability to critically augment sonar and vision systems. We show that the artificial lateral line can successfully perform dipole source localization and hydrodynamic wake detection. The development of the artificial lateral line is aimed at fundamentally enhancing human ability to detect, navigate, and survive in the underwater environment
    corecore