21 research outputs found

    Functional Assessment of the Medicago truncatula

    Get PDF
    The Medicago truncatula NIP/LATD (for Numerous Infections and Polyphenolics/Lateral root-organ Defective) gene encodes a protein found in a clade of nitrate transporters within the large NRT1(PTR) family that also encodes transporters of dipeptides and tripeptides, dicarboxylates, auxin, and abscisic acid. Of the NRT1(PTR) members known to transport nitrate, most are low-affinity transporters. Here, we show that M. truncatula nip/latd mutants are more defective in their lateral root responses to nitrate provided at low (250 μm) concentrations than at higher (5 mm) concentrations; however, nitrate uptake experiments showed no discernible differences in uptake in the mutants. Heterologous expression experiments showed that MtNIP/LATD encodes a nitrate transporter: expression in Xenopus laevis oocytes conferred upon the oocytes the ability to take up nitrate from the medium with high affinity, and expression of MtNIP/LATD in an Arabidopsis chl1(nrt1.1) mutant rescued the chlorate susceptibility phenotype. X. laevis oocytes expressing mutant Mtnip-1 and Mtlatd were unable to take up nitrate from the medium, but oocytes expressing the less severe Mtnip-3 allele were proficient in nitrate transport. M. truncatula nip/latd mutants have pleiotropic defects in nodulation and root architecture. Expression of the Arabidopsis NRT1.1 gene in mutant Mtnip-1 roots partially rescued Mtnip-1 for root architecture defects but not for nodulation defects. This suggests that the spectrum of activities inherent in AtNRT1.1 is different from that possessed by MtNIP/LATD, but it could also reflect stability differences of each protein in M. truncatula. Collectively, the data show that MtNIP/LATD is a high-affinity nitrate transporter and suggest that it could have another function

    Allelic differences in Medicago truncatula NIP/LATD mutants correlate with their encoded proteins’ transport activities in planta

    Get PDF
    This article examines the hypothesis that MtNIP/LATD may have another biochemical activity

    Functional Assessment of the Medicago truncatula NIP/LATD Protein Demonstrates That It Is a High-Affinity Nitrate Transporter

    Get PDF
    Article on the functional assessment of the Medicago truncatula NIP/LATD protein demonstrating that it is a high-affinity nitrate transporter

    High-throughput Analysis of Legume Root Nodule Development

    No full text

    MicroRNAs in the Rhizobia Legume Symbiosis1

    No full text

    A Rhizobium leguminosarum AcpXL Mutant Produces Lipopolysaccharide Lacking 27-Hydroxyoctacosanoic Acid

    No full text
    The structure of the lipid A from Rhizobium etli and Rhizobium leguminosarum lipopolysaccharides (LPSs) lacks phosphate and contains a galacturonosyl residue at its 4′ position, an acylated 2-aminogluconate in place of the proximal glucosamine, and a very long chain ω-1 hydroxy fatty acid, 27-hydroxyoctacosanoic acid (27OHC28:0). The 27OHC28:0 moiety is common in lipid A's among members of the Rhizobiaceae and also among a number of the facultative intracellular pathogens that form chronic infections, e.g., Brucella abortus, Bartonella henselae, and Legionella pneumophila. In this paper, a mutant of R. leguminosarum was created by placing a kanamycin resistance cassette within acpXL, the gene which encodes the acyl carrier protein for 27OHC28:0. The result was an LPS containing a tetraacylated lipid A lacking 27OHC28:0. A small amount of the mutant lipid A may contain an added palmitic acid residue. The mutant is sensitive to changes in osmolarity and an increase in acidity, growth conditions that likely occur in the nodule microenvironment. In spite of the probably hostile microenvironment of the nodule, the acpXL mutant is still able to form nitrogen-fixing root nodules even though the appearance and development of nodules are delayed. Therefore, it is possible that the acpXL mutant has a host-inducible mechanism which enables it to adapt to these physiological changes

    nip, a Symbiotic Medicago truncatula Mutant That Forms Root Nodules with Aberrant Infection Threads and Plant Defense-Like Response

    No full text
    To investigate the legume-Rhizobium symbiosis, we isolated and studied a novel symbiotic mutant of the model legume Medicago truncatula, designated nip (numerous infections and polyphenolics). When grown on nitrogen-free media in the presence of the compatible bacterium Sinorhizobium meliloti, the nip mutant showed nitrogen deficiency symptoms. The mutant failed to form pink nitrogen-fixing nodules that occur in the wild-type symbiosis, but instead developed small bump-like nodules on its roots that were blocked at an early stage of development. Examination of the nip nodules by light microscopy after staining with X-Gal for S. meliloti expressing a constitutive GUS gene, by confocal microscopy following staining with SYTO-13, and by electron microscopy revealed that nip initiated symbiotic interactions and formed nodule primordia and infection threads. The infection threads in nip proliferated abnormally and very rarely deposited rhizobia into plant host cells; rhizobia failed to differentiate further in these cases. nip nodules contained autofluorescent cells and accumulated a brown pigment. Histochemical staining of nip nodules revealed this pigment to be polyphenolic accumulation. RNA blot analyses demonstrated that nip nodules expressed only a subset of genes associated with nodule organogenesis, as well as elevated expression of a host defense-associated phenylalanine ammonia lyase gene. nip plants were observed to have abnormal lateral roots. nip plant root growth and nodulation responded normally to ethylene inhibitors and precursors. Allelism tests showed that nip complements 14 other M. truncatula nodulation mutants but not latd, a mutant with a more severe nodulation phenotype as well as primary and lateral root defects. Thus, the nip mutant defines a new locus, NIP, required for appropriate infection thread development during invasion of the nascent nodule by rhizobia, normal lateral root elongation, and normal regulation of host defense-like responses during symbiotic interactions
    corecore