37 research outputs found

    Modeling the impact of the direct emission of oxygenated organic species on biomass combustion smoke plume photochemistry

    Get PDF

    Determination of the gut retention of plastic microbeads and microfibers in goldfish 1 (Carassius auratus)

    Get PDF
    Microplastics are ubiquitous pollutants in aquatic habitats and commonly found in the gut contents of fish yet relatively little is known about the retention of these particles by fish. In this study, goldfish were fed a commercial fish food pellet amended with 50 particles of one of two microplastics types, microbeads and microfibers. Microbeads were obtained from a commercial facial cleanser while microfibers were obtained from washed synthetic textile. Following consumption of the amended pellet, fish were allowed to feed to satiation on non-amended food followed by fasting for periods ranging from 1.5 h to 6 days. Fish sacrificed at different time points were dissected to remove gut contents and the digesta contents retention and microplastic retention was determined. Although a small number of microplastic particles were retained in fish GI-tracts after 6 days (0–3 particles/50), the retention of microplastics was generally similar to the retention of bulk digesta contents. According to a breakpoint regression model fitted to digesta contents and microplastic particles, the 50% and 90% evacuation times were 10 h and 33.4 h, respectively. The results of this study indicate that neither microbeads nor microfibers are likely to accumulate within the gut contents of fish over successive meals

    Synthetic Polymer Contamination in Bottled Water

    Get PDF
    Eleven globally sourced brands of bottled water, purchased in 19 locations in nine different countries, were tested for microplastic contamination using Nile Red tagging. Of the 259 total bottles processed, 93% showed some sign of microplastic contamination. After accounting for possible background (lab) contamination, an average of 10.4 microplastic particles >100 um in size per liter of bottled water processed were found. Fragments were the most common morphology (66%) followed by fibers. Half of these particles were confirmed to be polymeric in nature using FTIR spectroscopy with polypropylene being the most common polymer type (54%), which matches a common plastic used for the manufacture of bottle caps. A small fraction of particles (4%) showed the presence of industrial lubricants. While spectroscopic analysis of particles smaller than 100 um was not possible, the adsorption of the Nile Red dye indicates that these particles are most probably plastic. Including these smaller particles (6.5–100 um), an average of 325 microplastic particles per liter of bottled water was found. Microplastic contamination range of 0 to over 10,000 microplastic particles per liter with 95% of particles being between 6.5 and 100 um in size. Data suggests the contamination is at least partially coming from the packaging and/or the bottling process itself. Given the prevalence of the consumption of bottled water across the globe, the results of this study support the need for further studies on the impacts of micro- and nano- plastics on human health

    Complex Effects Arising in Smoke Plume Simulations due to Inclusion of Direct Emissions of Oxygenated Organic Species from Biomass Combustion

    Get PDF
    Oxygenated volatile organic species (oxygenates), including HCOOH, H2CO, CH3OH, HOCH2CHO (hydroxyacetaldehyde), CH3COOH, and C6H5OH, have recently been identified by Fourier transform infrared measurements as a significant component of the direct emissions from biomass combustion. These oxygenates have not generally been included in the hydrocarbon-based initial emission profiles used in previous photochemical simulations of biomass combustion smoke plumes. We explore the effects of oxygenates on this photochemistry by using an established initial emission hydrocarbon profile and comparing simulation results obtained both with and without addition of the above six oxygenates. Simulations are started at noon and carried out for 30 hours in an expanding Lagrangian plume. After an initial transient period during which [NOx] falls rapidly, conditions within the oxygenated smoke plume are found to be strongly NOx-sensitive, and the simulated final species profile is thus strongly dependent upon the Ξ”[NO]/Ξ”[CO] initial emission profile. Oxygenate addition results in very significant and complex effects on net O3 production, as well as on the relative amounts of long-lived HOx and NOx reservoir species (H2O2, organic hydroperoxides, HNO3, and peroxyacetyl nitrate (PAN)) that are mixed into the surrounding atmosphere. Oxygenates may either increase or decrease net O3 production (depending upon the initial Ξ”[NO]/Ξ”[CO]). However, they always increase H2O2 and organic hydroperoxide production as a result of increased rates of radical + radical reactions. These effects spring largely from accelerated removal of NOx from the smoke plume due to increased radical concentrations resulting both from photolysis of oxygenates (mainly CH2O) and from their relatively high reactivity. Predicted concentrations of H2O2, Ξ”[O3]/Ξ”[CO], Ξ”[NH3]/Ξ”[CO], and Ξ”[HCOOH]/Ξ”[CO] are compared with some available measured values

    An Analysis of the Chemical Processes in the Smoke Plume from a Savanna Fire

    Get PDF
    [1] Photochemistry in young plumes from vegetation fires significantly transforms the initial fire emissions within the first hour after the emissions are injected into the atmosphere. Here we present an investigation of field measurements obtained in a smoke plume from a prescribed savanna fire during the SAFARI 2000 field experiment using a detailed photochemical box-dilution model. The dilution used in the model simulations was constrained by measurements of chemically passive tracers (e.g., CO) near and downwind of the fire. The emissions of the dominant carbonaceous compounds, including oxygenated ones, were taken into account. The field measurements revealed significant production of ozone and acetic acid in the gas phase. The photochemical model simulations also predict ozone production, but significantly less than the measurements. The underestimation of the ozone production in the model simulations is likely caused by shortcomings of our current understanding of ozone photochemistry under the polluted conditions in this young smoke plume. Several potential reasons for this discrepancy are discussed. One possible cause could be the neglect of unmeasured emissions or surface reactions of NO2 with methanol or other hydrocarbons. In contrast to the field measurements, no significant production of acetic acid was simulated by the model. We know of no gas-phase reactions that cause the production of acetic acid on the timescale considered here. Though many processes were well-simulated by the model, there is a need for further research on some key photochemical processes within young plumes from biomass burning and the potential interactions between gas and the particulate phases. These fundamental photochemical processes may also be of importance in other polluted environments

    A multilevel dataset of microplastic abundance in the world’s upper ocean and the Laurentian Great Lakes

    Get PDF
    A total of 8218 pelagic microplastic samples from the world’s oceans were synthesized to create a dataset composed of raw, calibrated, processed, and gridded data which are made available to the public. The raw microplastic abundance data were obtained by different research projects using surface net tows or continuous seawater intake. Fibrous microplastics were removed from the calibrated dataset. Microplastic abundance which fluctuates due to vertical mixing under different oceanic conditions was standardized. An optimum interpolation method was used to create the gridded data; in total, there were 24.4 trillion pieces (8.2 × 104 ~ 57.8 × 104 tons) of microplastics in the world’s upper oceans

    Illumination of Parainfluenza Virus Infection and Transmission in Living Animals Reveals a Tissue-Specific Dichotomy

    Get PDF
    The parainfluenza viruses (PIVs) are highly contagious respiratory paramyxoviruses and a leading cause of lower respiratory tract (LRT) disease. Since no vaccines or antivirals exist, non-pharmaceutical interventions are the only means of control for these pathogens. Here we used bioluminescence imaging to visualize the spatial and temporal progression of murine PIV1 (Sendai virus) infection in living mice after intranasal inoculation or exposure by contact. A non-attenuated luciferase reporter virus (rSeV-luc(M-F*)) that expressed high levels of luciferase yet was phenotypically similar to wild-type Sendai virus in vitro and in vivo was generated to allow visualization. After direct intranasal inoculation, we unexpectedly observed that the upper respiratory tract (URT) and trachea supported robust infection under conditions that result in little infection or pathology in the lungs including a low inoculum of virus, an attenuated virus, and strains of mice genetically resistant to lung infection. The high permissivity of the URT and trachea to infection resulted in 100% transmission to naΓ―ve contact recipients, even after low-dose (70 PFU) inoculation of genetically resistant BALB/c donor mice. The timing of transmission was consistent with the timing of high viral titers in the URT and trachea of donor animals but was independent of the levels of infection in the lungs of donors. The data therefore reveals a disconnect between transmissibility, which is associated with infection in the URT, and pathogenesis, which arises from infection in the lungs and the immune response. Natural infection after transmission was universally robust in the URT and trachea yet limited in the lungs, inducing protective immunity without weight loss even in genetically susceptible 129/SvJ mice. Overall, these results reveal a dichotomy between PIV infection in the URT and trachea versus the lungs and define a new model for studies of pathogenesis, development of live virus vaccines, and testing of antiviral therapies

    Genome remodelling in a basal-like breast cancer metastasis and xenograft

    Get PDF
    Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic changes associated with tumour progression. Here we describe the genomic analyses of four DNA samples from an African-American patient with basal-like breast cancer: peripheral blood, the primary tumour, a brain metastasis and a xenograft derived from the primary tumour. The metastasis contained two de novo mutations and a large deletion not present in the primary tumour, and was significantly enriched for 20 shared mutations. The xenograft retained all primary tumour mutations and displayed a mutation enrichment pattern that resembled the metastasis. Two overlapping large deletions, encompassing CTNNA1, were present in all three tumour samples. The differential mutation frequencies and structural variation patterns in metastasis and xenograft compared with the primary tumour indicate that secondary tumours may arise from a minority of cells within the primary tumour

    Anthropogenic contamination of tap water, beer, and sea salt.

    Full text link
    Plastic pollution has been well documented in natural environments, including the open waters and sediments within lakes and rivers, the open ocean and even the air, but less attention has been paid to synthetic polymers in human consumables. Since multiple toxicity studies indicate risks to human health when plastic particles are ingested, more needs to be known about the presence and abundance of anthropogenic particles in human foods and beverages. This study investigates the presence of anthropogenic particles in 159 samples of globally sourced tap water, 12 brands of Laurentian Great Lakes beer, and 12 brands of commercial sea salt. Of the tap water samples analyzed, 81% were found to contain anthropogenic particles. The majority of these particles were fibers (98.3%) between 0.1-5 mm in length. The range was 0 to 61 particles/L, with an overall mean of 5.45 particles/L. Anthropogenic debris was found in each brand of beer and salt. Of the extracted particles, over 99% were fibers. After adjusting for particles found in lab blanks for both salt and beer, the average number of particles found in beer was 4.05 particles/L with a range of 0 to 14.3 particles/L and the average number of particles found in each brand of salt was 212 particles/kg with a range of 46.7 to 806 particles/kg. Based on consumer guidelines, our results indicate the average person ingests over 5,800 particles of synthetic debris from these three sources annually, with the largest contribution coming from tap water (88%)

    General information about the 12 beers analyzed for this study.

    Full text link
    <p>General information about the 12 beers analyzed for this study.</p
    corecore