12,206 research outputs found
The t-J model on a semi-infinite lattice
The hole spectral function of the t-J model on a two-dimensional
semi-infinite lattice is calculated using the spin-wave and noncrossing
approximations. In the case of small hole concentration and strong
correlations, , several near-boundary site rows appear to be depleted
of holes. The reason for this depletion is a deformation of the magnon cloud,
which surrounds the hole, near the boundary. The hole depletion in the boundary
region leads to a more complicated spectral function in the boundary row in
comparison with its bulk shape.Comment: 8 pages, 5 figure
Color-coded global topographic map of Mars
A Digital Terrain Model (DTM) was derived with both Mercator and Sinusoidal Equal-area projections from the global topographic map of Mars at a scale of 1:15 million and a contour interval of 1 km. Elevations on the map are referred to the Mars topographic datum that is defined by the gravity field at a 6.1-millibar pressure surface with respect to the center of mass of Mars. The DTM has a resolution at the equator of 1/59.226 degrees (exactly 1 km) per pixel. By using the DTM, color-coded global maps of Mars' topography were generated in both the Mercator projection and the Sinusoidal Equal-Area projection. On both maps, colors indicate 1 km increments of height. From the equal-are dataset, the positive and negative elevation distributions are calculated to be 67 and 33 percent, respectively
Mars elevation distribution
A Digital Terrain Model (DTM) of Mars was derived with both Mercator and Sinusoidal Equal-Area projections from the global topographic map of Mars (scale 1:15 million, contour interval 1 km). Elevations on the map are referred to Mars' topographic datum that is defined by the gravity field at a 6.1-millibar pressure surface with respect to the center of mass of Mars. The DTM has a resolution at the equator of 1/59.226 degrees (exactly 1 km) per pixel. By using the DTM, the volumetric distribution of Mars topography above and below the datum has previously been calculated. Three types of elevation distributions of Mars' topography were calculated from the same DTM: (1) the frequency distribution of elevations at the pixel resolution; (2) average elevations in increments of 6 degrees in both longitude and latitude; and (3) average elevations in 36 separate blocks, each covering 30 degrees of latitude and 60 degrees of longitude
Pupillometry, a bioengineering overview
The pupillary control system is examined using a microprocessor based integrative pupillometer. The real time software functions of the microprocessor include: data collection, stimulus generation and area to diameter conversion. Results of an analysis of linear and nonlinear phenomena are presented
Spin dephasing and pumping in graphene due to random spin-orbit interaction
We consider spin effects related to the random spin-orbit interaction in
graphene. Such a random interaction can result from the presence of ripples
and/or other inhomogeneities at the graphene surface. We show that the random
spin-orbit interaction generally reduces the spin dephasing (relaxation) time,
even if the interaction vanishes on average. Moreover, the random spin-orbit
coupling also allows for spin manipulation with an external electric field. Due
to the spin-flip interband as well as intraband optical transitions, the spin
density can be effectively generated by periodic electric field in a relatively
broad range of frequencies.Comment: 9 pages, 7 figure
PCN21 FIRST-LINE BEVACIZUMAB-BASED THERAPY VERSUS PEMETREXED + CISPLATIN FOR THE TREATMENT OF ADVANCED ADENOCARCINOMA NONSQUAMOUS NON-SMALL CELL LUNG CANCER: INDIRECT COMPARISON APPLYING REAL-LIFE OUTCOMES
Digitalitzat per Artypla
Spin relaxation and combined resonance in two-dimensional electron systems with spin-orbit disorder
Disorder in spin-orbit (SO) coupling is an important feature of real
low-dimensional electron structures. We study spin relaxation due to such a
disorder as well as resulting abilities of spin manipulation. The spin
relaxation reveals quantum effects when the spatial scale of the randomness is
smaller than the electron wavelength. Due to the disorder in SO coupling, a
time-dependent external electric field generates a spatially random
spin-dependent perturbation. The resulting electric dipole spin resonance in a
two-dimensional electron gas leads to spin injection in a frequency range of
the order of the Fermi energy. These effects can be important for possible
applications in spintronics.Comment: 4 pages, 3 figure
Low-frequency incommensurate magnetic response in strongly correlated systems
It is shown that in the t-J model of Cu-O planes at low frequencies the
dynamic spin structure factor is peaked at incommensurate wave vectors
(1/2+-delta,1/2)$, (1/2,1/2+-delta). The incommensurability is connected with
the momentum dependencies of the magnon frequency and damping near the
antiferromagnetic wave vector. The behavior of the incommensurate peaks is
similar to that observed in La_{2-x}(Ba,Sr)_xCuO_{4+y} and YBa_2Cu_3O_{7-y}:
for hole concentrations 0.02<x<=0.12 we find that delta is nearly proportional
to x, while for x>0.12 it tends to saturation. The incommensurability
disappears with increasing temperature. Generally the incommensurate magnetic
response is not accompanied by an inhomogeneity of the carrier density.Comment: 4 pages, 4 figure
- …