13,847 research outputs found

    Coherent Excitation of the 6S1/2 to 5D3/2 Electric Quadrupole Transition in 138Ba+

    Full text link
    The electric dipole-forbidden, quadrupole 6S1/2 5D3/2 transition in Ba+ near 2051 nm, with a natural linewidth of 13 mHz, is attractive for potential observation of parity non-conservation, and also as a clock transition for a barium ion optical frequency standard. This transition also offers a direct means of populating the metastable 5D3/2 state to measure the nuclear magnetic octupole moment in the odd barium isotopes. Light from a diode-pumped, solid state Tm,Ho:YLF laser operating at 2051 nm is used to coherently drive this transition between resolved Zeeman levels in a single trapped 138Ba+ ion. The frequency of the laser is stabilized to a high finesse Fabry Perot cavity at 1025 nm after being frequency doubled. Rabi oscillations on this transition indicate a laser-ion coherence time of 3 ms, most likely limited by ambient magnetic field fluctuations.Comment: 5 pages, 5 figure

    Spin-orbital phase synchronization in the magnetic field-driven electron dynamics in a double quantum dot

    Full text link
    We study the dynamics of an electron confined in a one-dimensional double quantum dot in the presence of driving external magnetic fields. The orbital motion of the electron is coupled to the spin dynamics by spin orbit interaction of the Dresselhaus type. We derive an effective time-dependent Hamiltonian model for the orbital motion of the electron and obtain a synchronization condition between the orbital and the spin dynamics. From this model we deduce an analytical expression for the Arnold tongue and propose an experimental scheme for realizing the synchronization of the orbital and spin dynamics.Comment: 6 figures, 14 page

    Optical properties and Raman scattering of vanadium ladder compounds

    Full text link
    We investigate electronic and optical properties of the V-based ladder compounds NaV2O5, the iso-structural CaV2O5, as well as MgV2O5, which differs from NaV2O5 and CaV2O5 in the c axis stacking. We calculate ab initio the A_g phonon modes in these compounds as a basis for the investigation of the electron-phonon and spin-phonon coupling. The phonon modes together with the dielectric tensors as a function of the corresponding ion displacements are the starting point for the calculation of the A_g Raman scattering.Comment: 4 pages, 5 figures, .bbl file with references included. Accepted for publication in Physica Script
    • …
    corecore