1,234 research outputs found
Linearized model Fokker-Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests
A set of key properties for an ideal dissipation scheme in gyrokinetic
simulations is proposed, and implementation of a model collision operator
satisfying these properties is described. This operator is based on the exact
linearized test-particle collision operator, with approximations to the
field-particle terms that preserve conservation laws and an H-Theorem. It
includes energy diffusion, pitch-angle scattering, and finite Larmor radius
effects corresponding to classical (real-space) diffusion. The numerical
implementation in the continuum gyrokinetic code GS2 is fully implicit and
guarantees exact satisfaction of conservation properties. Numerical results are
presented showing that the correct physics is captured over the entire range of
collisionalities, from the collisionless to the strongly collisional regimes,
without recourse to artificial dissipation.Comment: 13 pages, 8 figures, submitted to Physics of Plasmas; typos fixe
Development of a taxonomy to describe massage treatments for musculoskeletal pain
BACKGROUND: One of the challenges in conducting research in the field of massage and bodywork is the lack of consistent terminology for describing the treatments given by massage therapists. The objective of this study was to develop a taxonomy to describe what massage therapists actually do when giving a massage to patients with musculoskeletal pain. METHODS: After conducting a review of the massage treatment literature for musculoskeletal pain, a list of candidate techniques was generated for possible inclusion in the taxonomy. This list was modified after discussions with a senior massage therapist educator and seven experienced massage therapists participating in a study of massage for neck pain. RESULTS: The taxonomy was conceptualized as a three level classification system, principal goals of treatment, styles, and techniques. Four categories described the principal goal of treatment (i.e., relaxation massage, clinical massage, movement re-education and energy work). Each principal goal of treatment could be met using a number of different styles, with each style consisting of a number of specific techniques. A total of 36 distinct techniques were identified and described, many of which could be included in multiple styles. CONCLUSION: A new classification system is presented whereby practitioners using different styles of massage can describe the techniques they employ using consistent terminology. This system could help facilitate standardized reporting of massage interventions
Hole-Hole Contact Interaction in the t-J Model
Using an analytical variational approach we calculate the hole-hole contact
interaction on the N\'{e}el background. Solution of the Bethe-Salpeter equation
with this interaction gives bound states in - and p-waves with binding
energies close to those obtained by numerical methods. At the
bound state disappears. In conclusion we discuss the relation between short
range and long range interactions and analogy with the problem of pion
condensation in nuclear matter.Comment: 11 pp. (LATEX), 7 figures (PostScript) appended, report N
Field- and pressure-induced magnetic quantum phase transitions in TlCuCl_3
Thallium copper chloride is a quantum spin liquid of S = 1/2 Cu^2+ dimers.
Interdimer superexchange interactions give a three-dimensional magnon
dispersion and a spin gap significantly smaller than the dimer coupling. This
gap is closed by an applied hydrostatic pressure of approximately 2kbar or by a
magnetic field of 5.6T, offering a unique opportunity to explore the both types
of quantum phase transition and their associated critical phenomena. We use a
bond-operator formulation to obtain a continuous description of all disordered
and ordered phases, and thus of the transitions separating these. Both
pressure- and field-induced transitions may be considered as the Bose-Einstein
condensation of triplet magnon excitations, and the respective phases of
staggered magnetic order as linear combinations of dimer singlet and triplet
modes. We focus on the evolution with applied pressure and field of the
magnetic excitations in each phase, and in particular on the gapless
(Goldstone) modes in the ordered regimes which correspond to phase fluctuations
of the ordered moment. The bond-operator description yields a good account of
the magnetization curves and of magnon dispersion relations observed by
inelastic neutron scattering under applied fields, and a variety of
experimental predictions for pressure-dependent measurements.Comment: 20 pages, 17 figure
Using behavior-analytic implicit tests to assess sexual interests among normal and sex-offender populations
The development of implicit tests for measuring biases and behavioral predispositions is a recent development within psychology. While such tests are usually researched within a social-cognitive paradigm, behavioral researchers have also begun to view these tests as potential tests of conditioning histories, including in the sexual domain.
The objective of this paper is to illustrate the utility of a behavioral approach to implicit testing and means by which implicit tests can be built to the standards of behavioral psychologists.
Research findings illustrating the short history of implicit testing within the experimental analysis of behavior are reviewed. Relevant parallel and overlapping research findings from the field of social cognition and on the Implicit Association Test are also outlined.
New preliminary data obtained with both normal and sex offender populations are described in order to illustrate how behavior-analytically conceived implicit tests may have potential as investigative tools for assessing histories of sexual arousal conditioning and derived stimulus associations.
It is concluded that popular implicit tests are likely sensitive to conditioned and derived stimulus associations in the history of the test-taker rather than 'unconscious cognitions', per se
Simply imagining sunshine, lollipops and rainbows will not budge the bias: The role of ambiguity in interpretive bias modification
Imagery-based interpretive bias modification (CBM-I) involves repeatedly imagining scenarios that are initially ambiguous before being resolved as either positive or negative in the last word/s. While the presence of such ambiguity is assumed to be important to achieve change in selective interpretation, it is also possible that the act of repeatedly imagining positive or negative events could produce such change in the absence of ambiguity. The present study sought to examine whether the ambiguity in imagery-based CBM-I is necessary to elicit change in interpretive bias, or, if the emotional content of the imagined scenarios is sufficient to produce such change. An imagery-based CBM-I task was delivered to participants in one of four conditions, where the valence of imagined scenarios were either positive or negative, and the ambiguity of the scenario was either present (until the last word/s) or the ambiguity was absent (emotional valence was evident from the start). Results indicate that only those who received scenarios in which the ambiguity was present acquired an interpretive bias consistent with the emotional valence of the scenarios, suggesting that the act of imagining positive or negative events will only influence patterns of interpretation when the emotional ambiguity is a consistent feature
Search for the Higgs boson in events with missing transverse energy and b quark jets produced in proton-antiproton collisions at s**(1/2)=1.96 TeV
We search for the standard model Higgs boson produced in association with an
electroweak vector boson in events with no identified charged leptons, large
imbalance in transverse momentum, and two jets where at least one contains a
secondary vertex consistent with the decay of b hadrons. We use ~1 fb-1
integrated luminosity of proton-antiproton collisions at s**(1/2)=1.96 TeV
recorded by the CDF II experiment at the Tevatron. We find 268 (16) single
(double) b-tagged candidate events, where 248 +/- 43 (14.4 +/- 2.7) are
expected from standard model background processes. We place 95% confidence
level upper limits on the Higgs boson production cross section for several
Higgs boson masses ranging from 110 GeV/c2 to 140 GeV/c2. For a mass of 115
GeV/c2 the observed (expected) limit is 20.4 (14.2) times the standard model
prediction.Comment: 8 pages, 2 figures, submitted to Phys. Rev. Let
Observation and Mass Measurement of the Baryon
We report the observation and measurement of the mass of the bottom, strange
baryon through the decay chain , where
, , and .
Evidence for observation is based on a signal whose probability of arising from
the estimated background is 6.6 x 10^{-15}, or 7.7 Gaussian standard
deviations. The mass is measured to be (stat.) (syst.) MeV/.Comment: Minor text changes for the second version. Accepted by Phys. Rev.
Let
Search for Third Generation Vector Leptoquarks in p anti-p Collisions at sqrt(s) = 1.96 TeV
We describe a search for a third generation vector leptoquark (VLQ3) that
decays to a b quark and tau lepton using the CDF II detector and 322 pb^(-1) of
integrated luminosity from the Fermilab Tevatron. Vector leptoquarks have been
proposed in many extensions of the standard model (SM). Observing a number of
events in agreement with SM expectations, assuming Yang-Mills (minimal)
couplings, we obtain the most stringent upper limit on the VLQ3 pair production
cross section of 344 fb (493 fb) and lower limit on the VLQ3 mass of 317
GeV/c^2 (251 GeV/c^2) at 95% C.L.Comment: 7 pages, 2 figures, submitted to PR
Polarizations of J/psi and psi(2S) Mesons Produced in ppbar Collisions at 1.96 TeV
We have measured the polarizations of \jpsi and \psiprime mesons as
functions of their transverse momentum \pt when they are produced promptly in
the rapidity range with \pt \geq 5 \pgev. The analysis is performed
using a data sample with an integrated luminosity of about 800 \ipb collected
by the CDF II detector. For both vector mesons, we find that the polarizations
become increasingly longitudinal as \pt increases from 5 to 30 \pgev. These
results are compared to the predictions of nonrelativistic quantum
chromodynamics and other contemporary models. The effective polarizations of
\jpsi and \psiprime mesons from -hadron decays are also reported.Comment: 8 pages, 7 figures, published in Physical Review Letter
- …