1,418 research outputs found
Novel techniques to cool and rotate Bose-Einstein condensates in time-averaged adiabatic potentials
We report two novel techniques for cooling and rotating Bose-Einstein
condensates in a dilute rubidium vapour that highlight the control and
versatility afforded over cold atom systems by time-averaged adiabatic
potentials (TAAPs). The intrinsic loss channel of the TAAP has been
successfully employed to evaporatively cool a sample of trapped atoms to
quantum degeneracy. The speed and efficiency of this process compares well with
that of conventional forced rf-evaporation. In an independent experiment, we
imparted angular momentum to a cloud of atoms forming a Bose-Einstein
condensate by introducing a rotating elliptical deformation to the TAAP
geometry. Triangular lattices of up to 60 vortices were created. All findings
reported herein result from straightforward adjustments of the magnetic fields
that give rise to the TAAP.Comment: The first two authors contributed equally to this wor
Trapping Ultracold Atoms in a Time-Averaged Adiabatic Potential
We report the first experimental realization of ultracold atoms confined in a
time-averaged, adiabatic potential (TAAP). This novel trapping technique
involves using a slowly oscillating ( kHz) bias field to time-average the
instantaneous potential given by dressing a bare magnetic potential with a high
frequency ( MHz) magnetic field. The resultant potentials provide a
convenient route to a variety of trapping geometries with tunable parameters.
We demonstrate the TAAP trap in a standard time-averaged orbiting potential
trap with additional Helmholtz coils for the introduction of the radio
frequency dressing field. We have evaporatively cooled 5 atoms of
Rb to quantum degeneracy and observed condensate lifetimes of over
\unit[3]{s}.-Comment: 4 pages, 6 figure
Tunable fibre-coupled multiphoton microscopy with a negative curvature fibre
Negative curvature fibre (NCF) guides light in its core by inhibiting the coupling of core and cladding modes. In this work, an NCF was designed and fabricated to transmit ultrashort optical pulses for multiphoton microscopy with low group velocity dispersion (GVD) at 800 nm. Its attenuation was measured to be <0.3 dB m(-1) over the range 600-850 nm and the GVD was -180 ± 70 fs(2) m(-1) at 800 nm. Using an average fibre output power of ∼20 mW and pulse repetition rate of 80 MHz, the NCF enabled pulses with a duration of <200 fs to be transmitted through a length of 1.5 m of fibre over a tuning range of 180 nm without the need for dispersion compensation. In a 4 m fibre, temporal and spectral pulse widths were maintained to within 10% of low power values up to the maximum fibre output power achievable with the laser system used of 278 mW at 700 nm, 808 mW at 800 nm and 420 mW at 860 nm. When coupled to a multiphoton microscope, it enabled imaging of ex vivo tissue using excitation wavelengths from 740 nm to 860 nm without any need for adjustments to the set-up
Self-Assessment and Planned Change of Placement and Career Services Center
In the 1990s, college and university career services and placement units face many challenges which may influence their success including (a) increased budgetary constraints, (b) changing student demographics, (c) increased availability of computer technologies, (d) new service delivery models, and (e) changing employer recruitment practices. In an effort to address these issues and examine its role within the university (Roth, 1994), the Placement and Career Information Center (PCIC) at Central Michigan University undertook a program of applied research, self-assessment and planned change. The purpose of this article is to briefly report our experiences in conducting this program of applied research. The assessment strategy is presented in the first part of this report. Next, the methods used to collect data and assessment, sampling procedures and response rates are described. Following this, highlights of the assessment results are presented including a summary of some changes already made and those planned for the future. The results of this study are presented in detail in Adams, et at. (1994)
Wind Structure in Winter Storms
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77570/1/AIAA-511-343.pd
Pensions and the health of older people in South Africa: Is there an effect?
This paper critically reviews evidence from low and middle income countries that pensions are associated with better health outcomes for older people. It draws on new, nationally representative survey data from South Africa to provide a systematic analysis of pension effects on health and quality of life. It reports significant associations with the frequency of health service utilisation, as well as with awareness and treatment of hypertension. There is, however, no association with actual control of hypertension, self-reported health or quality of life. The paper calls for a more balanced and integrated approach to social protection for older people
Modification of classical electron transport due to collisions between electrons and fast ions
A Fokker-Planck model for the interaction of fast ions with the thermal
electrons in a quasi-neutral plasma is developed. When the fast ion population
has a net flux (i.e. the distribution of the fast ions is anisotropic in
velocity space) the electron distribution function is significantly perturbed
from Maxwellian by collisions with the fast ions, even if the fast ion density
is orders of magnitude smaller than the electron density. The Fokker-Planck
model is used to derive classical electron transport equations (a generalized
Ohm's law and a heat flow equation) that include the effects of the
electron-fast ion collisions. It is found that these collisions result in a
current term in the transport equations which can be significant even when
total current is zero. The new transport equations are analyzed in the context
of a number of scenarios including particle heating in ICF and MIF
plasmas and ion beam heating of dense plasmas
Comparison of measured and EF5-r derived N₂O fluxes from a spring-fed river
There is considerable uncertainty in the estimates of indirect N₂O emissions as defined by the Intergovernmental Panel on Climate Change's (IPCC) methodology. Direct measurements of N₂O yields and fluxes in aquatic river environments are sparse and more data are required to determine the role that rivers play in the global N₂O budget.
The objectives of this research were to measure the N₂O fluxes from a spring-fed river, relate these fluxes to the dissolved N₂O concentrations and NO₃–N loading of the river, and to try and define the indirect emission factor (EF5-r) for the river.
Gas bubble ebullition was observed at the river source with bubbles containing 7.9 µL N₂O L⁻¹. River NO₃–N and dissolved N₂O concentrations ranged from 2.5 to 5.3 mg L⁻¹ and 0.4 to 1.9 µg N₂O-N L⁻¹ respectively with N₂O saturation reaching 404%. Floating headspace chambers were used to sample N₂O fluxes. N₂O–N fluxes were significantly related to dissolved N₂O–N concentrations (r² = 30.6) but not to NO₃–N concentrations. The N₂O–N fluxes ranged from 38-501 µg m⁻² h⁻¹, averaging 171 µg m⁻² h⁻¹ (± Std. Dev. 85) overall. The measured N₂O–N fluxes equated to an EF5-r of only 6.6% of that calculated using the IPCC methodology, and this itself was considered to be an over-estimate due to the degassing of antecedent dissolved N₂O present in the groundwater that fed the river
Derivation of tropospheric methane from TCCON CH₄ and HF total column observations
The Total Carbon Column Observing Network (TCCON) is a global ground-based network of Fourier transform spectrometers that produce precise measurements of column-averaged dry-air mole fractions of atmospheric methane (CH₄). Temporal variability in the total column of CH₄ due to stratospheric dynamics obscures fluctuations and trends driven by tropospheric transport and local surface fluxes that are critical for understanding CH₄ sources and sinks. We reduce the contribution of stratospheric variability from the total column average by subtracting an estimate of the stratospheric CH₄ derived from simultaneous measurements of hydrogen fluoride (HF). HF provides a proxy for stratospheric CH₄ because it is strongly correlated to CH₄ in the stratosphere, has an accurately known tropospheric abundance (of zero), and is measured at most TCCON stations. The stratospheric partial column of CH₄ is calculated as a function of the zonal and annual trends in the relationship between CH₄ and HF in the stratosphere, which we determine from ACE-FTS satellite data. We also explicitly take into account the CH₄ column averaging kernel to estimate the contribution of stratospheric CH₄ to the total column. The resulting tropospheric CH₄ columns are consistent with in situ aircraft measurements and augment existing observations in the troposphere
Fibre-coupled multiphoton microscope with adaptive motion compensation
To address the challenge of sample motion during in vivo imaging, we present a fibre-coupled multiphoton microscope with active axial motion compensation. The position of the sample surface is measured using optical coherence tomography and fed back to a piezo actuator that adjusts the axial location of the objective to compensate for sample motion. We characterise the system’s performance and demonstrate that it can compensate for axial sample velocities up to 700 µm/s. Finally we illustrate the impact of motion compensation when imaging multiphoton excited autofluorescence in ex vivo mouse skin
- …