5 research outputs found

    Development and validation of radiomic signature for predicting overall survival in advanced-stage cervical cancer

    Get PDF
    BackgroundThe role of artificial intelligence and radiomics in prediction model development in cancer has been increasing every passing day. Cervical cancer is the 4th most common cancer in women worldwide, contributing to 6.5% of all cancer types. The treatment outcome of cervical cancer patients varies and individualized prediction of disease outcome is of paramount importance.PurposeThe purpose of this study is to develop and validate the digital signature for 5-year overall survival prediction in cervical cancer using robust CT radiomic and clinical features.Materials and MethodsPretreatment clinical features and CT radiomic features of 68 patients, who were treated with chemoradiation therapy in our hospital, were used in this study. Radiomic features were extracted using an in-house developed python script and pyradiomic package. Clinical features were selected by the recursive feature elimination technique. Whereas radiomic feature selection was performed using a multi-step process i.e., step-1: only robust radiomic features were selected based on our previous study, step-2: a hierarchical clustering was performed to eliminate feature redundancy, and step-3: recursive feature elimination was performed to select the best features for prediction model development. Four machine algorithms i.e., Logistic regression (LR), Random Forest (RF), Support vector classifier (SVC), and Gradient boosting classifier (GBC), were used to develop 24 models (six models using each algorithm) using clinical, radiomic and combined features. Models were compared based on the prediction score in the internal validation.ResultsThe average prediction accuracy was found to be 0.65 (95% CI: 0.60–0.70), 0.72 (95% CI: 0.63–0.81), and 0.77 (95% CI: 0.72–0.82) for clinical, radiomic, and combined models developed using four prediction algorithms respectively. The average prediction accuracy was found to be 0.69 (95% CI: 0.62–0.76), 0.79 (95% CI: 0.72–0.86), 0.71 (95% CI: 0.62–0.80), and 0.72 (95% CI: 0.66–0.78) for LR, RF, SVC and GBC models developed on three datasets respectively.ConclusionOur study shows the promising predictive performance of a robust radiomic signature to predict 5-year overall survival in cervical cancer patients

    Emerging role of quantitative imaging (radiomics) and artificial intelligence in precision oncology

    Get PDF
    Cancer is a fatal disease and the second most cause of death worldwide. Treatment of cancer is a complex process and requires a multi-modality-based approach. Cancer detection and treatment starts with screening/diagnosis and continues till the patient is alive. Screening/diagnosis of the disease is the beginning of cancer management and continued with the staging of the disease, planning and delivery of treatment, treatment monitoring, and ongoing monitoring and follow-up. Imaging plays an important role in all stages of cancer management. Conventional oncology practice considers that all patients are similar in a disease type, whereas biomarkers subgroup the patients in a disease type which leads to the development of precision oncology. The utilization of the radiomic process has facilitated the advancement of diverse imaging biomarkers that find application in precision oncology. The role of imaging biomarkers and artificial intelligence (AI) in oncology has been investigated by many researchers in the past. The existing literature is suggestive of the increasing role of imaging biomarkers and AI in oncology. However, the stability of radiomic features has also been questioned. The radiomic community has recognized that the instability of radiomic features poses a danger to the global generalization of radiomic-based prediction models. In order to establish radiomic-based imaging biomarkers in oncology, the robustness of radiomic features needs to be established on a priority basis. This is because radiomic models developed in one institution frequently perform poorly in other institutions, most likely due to radiomic feature instability. To generalize radiomic-based prediction models in oncology, a number of initiatives, including Quantitative Imaging Network (QIN), Quantitative Imaging Biomarkers Alliance (QIBA), and Image Biomarker Standardisation Initiative (IBSI), have been launched to stabilize the radiomic features

    External Validation of Robust Radiomic Signature to Predict 2-Year Overall Survival in Non-Small-Cell Lung Cancer

    No full text
    Lung cancer is the second most fatal disease worldwide. In the last few years, radiomics is being explored to develop prediction models for various clinical endpoints in lung cancer. However, the robustness of radiomic features is under question and has been identified as one of the roadblocks in the implementation of a radiomic-based prediction model in the clinic. Many past studies have suggested identifying the robust radiomic feature to develop a prediction model. In our earlier study, we identified robust radiomic features for prediction model development. The objective of this study was to develop and validate the robust radiomic signatures for predicting 2-year overall survival in non-small cell lung cancer (NSCLC). This retrospective study included a cohort of 300 stage I–IV NSCLC patients. Institutional 200 patients’ data were included for training and internal validation and 100 patients’ data from The Cancer Image Archive (TCIA) open-source image repository for external validation. Radiomic features were extracted from the CT images of both cohorts. The feature selection was performed using hierarchical clustering, a Chi-squared test, and recursive feature elimination (RFE). In total, six prediction models were developed using random forest (RF-Model-O, RF-Model-B), gradient boosting (GB-Model-O, GB-Model-B), and support vector(SV-Model-O, SV-Model-B) classifiers to predict 2-year overall survival (OS) on original data as well as balanced data. Model validation was performed using 10-fold cross-validation, internal validation, and external validation. Using a multistep feature selection method, the overall top 10 features were chosen. On internal validation, the two random forest models (RF-Model-O, RF-Model-B) displayed the highest accuracy; their scores on the original and balanced datasets were 0.81 and 0.77 respectively. During external validation, both the random forest models’ accuracy was 0.68. In our study, robust radiomic features showed promising predictive performance to predict 2-year overall survival in NSCLC

    Systematic review and meta-analysis of prediction models used in cervical cancer

    No full text
    BACKGROUND: Cervical cancer is one of the most common cancers in women with an incidence of around 6.5 % of all the cancer in women worldwide. Early detection and adequate treatment according to staging improve the patient's life expectancy. Outcome prediction models might aid treatment decisions, but a systematic review on prediction models for cervical cancer patients is not available. DESIGN: We performed a systematic review for prediction models in cervical cancer following PRISMA guidelines. Key features that were used for model training and validation, the endpoints were extracted from the article and data were analyzed. Selected articles were grouped based on prediction endpoints i.e. Group1: Overall survival, Group2: progression-free survival; Group3: recurrence or distant metastasis; Group4: treatment response; Group5: toxicity or quality of life. We developed a scoring system to evaluate the manuscript. As per our criteria, studies were divided into four groups based on scores obtained in our scoring system, the Most significant study (Score > 60 %); Significant study (60 % > Score > 50 %); Moderately Significant study (50 % > Score > 40 %); least significant study (score 0.7) in endpoint prediction. CONCLUSIONS: Prediction models of cervical cancer toxicity, local or distant recurrence and survival prediction show promising results with reasonable prediction accuracy [c-index/AUC/R 2 > 0.7]. These models should also be validated on external data and evaluated in prospective clinical studies
    corecore